Hands-On

Cryptography
with Python

By Samuel Bowne

Hands-On Cryptography with Python

Leverage the power of Python to encrypt and decrypt data

Samuel Bowne

Packt

BIRMINGHAM - MUMBAI

Hands-On Cryptography with
Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Prachi Bisht

Content Development Editor: Deepti Thore
Technical Editor: Varsha Shivhare

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jisha Chirayil

Production Coordinator: Nilesh Mohite

First published: June 2018
Production reference: 1280618

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-444-3

www . packtpub.com

http://www.packtpub.com/

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
* Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.Packtpub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at servicegpacktpub.com for
more details.

At waw. Packtpub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.packtpub.com/
http://www.packtpub.com/

Contributor

About the author

Sam Bowne has been teaching computer networking and security classes at
City College of San Francisco since 2000. He has given talks and hands-on
training at DEFCON, HOPE, B-Sides SF, B-Sides LV, BayThreat,
LayerOne, Toorcon, and many other schools and conferences. He has done
his PhD and CISSP. He is a DEF CON Black-Badge co-winner.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packt
pub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com/

Table of Contents

Title Page
Copyright and Credits

Hands-0On Cryptography with Python
Packt Upsell

wWhy subscribe?

PacktPub.com
Contributor

About the author

Packt is searching for authors like you
Preface

Who this book is for

What this book covers
To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch

Reviews

1.0bfuscation

About cryptography
Installing and setting up Python

Using Python on Mac or Linux

Installing Python on Windows
Caesar cipher and ROT13

Implementing the Caesar cipher in Python

ROT13
base64 encoding

ASCII data

Binary data
XOR
Challenge 1 – the Caesar cipher
Challenge 2 – base64
Challenge 3 – X0R

Summary

2.Hashing
MD5 and SHA hashes

What are hashes?
Windows password hashes

Getting hashes with Cain

MD4 and Unicode

Cracking hashes with Google

Cracking hashes with wordlists
Linux password hashes
Challenge 1 – cracking Windows hashes
Challenge 2 – cracking many-round hashes
Challenge 3 – cracking Linux hashes

Summary

3.Strong Encryption

Strong encryption with AES
ECB and CBC modes

ECB
CBC

Padding oracle attack
Strong encryption with RSA

Public key encryption
RSA algorithm

Implementation in Python
Challenge – cracking RSA with similar factors

Large integers in Python
What's next?

Cryptography within IoT

ZigBee cryptographic keys
Complexity of ZigBee key management
Bluetooth – LE

Summary
Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Cryptography has a long and important history in protecting critical systems
and sensitive information. This book will show you how to encrypt,
evaluate, compare, and attack data using Python. Overall, the book will help
you deal with the common errors in encryption and show you how to
exploit them.

Who this book is for

This book is intended for security professionals who want to learn how to
encrypt data, evaluate and compare encryption methods, and how to attack
them.

What this book covers

chapter 1, Obfuscation, covers the Caesar cipher and ROT13, simple
character substitution ciphers, and base64 encoding. We then move on to
XOR. In the end, there are challenges to test your learning that involve
cracking the Caesar cipher, reversing base64 encoding, and deciphering
XOR encryption without the key.

chapter 2, Hashing, covers the older MD5 and the newer SHA hashing
techniques and also Windows password hashes. The weakest type of
hashing is common use, followed by Linux password hashes, which are the
strongest type of hashing in common use. Afterward, there are some
challenges to complete. The first is to crack some Windows hashes and
recover passwords, then you will be tasked with cracking hashes where you
don't even know how many rounds of hashing algorithm were used, and
finally you will be asked to crack those strong Linux hashes.

chapter 3, Strong Encryption, covers the primary mode used to hide data
today. It is strong enough for the US military. Then, there are two of its
modes, ECB and CBC; CBC being the stronger and more common one. We
will also discuss the padding oracle attack, which makes it possible to
overcome some parts of AES CBC if the designer makes an error and the
overly informative error message gives information to the attacker. Finally,
we introduce RSA, the main public key algorithm used today, which makes
it possible to send secrets over an insecure channel without having
exchanged a gives private key. Following all that, we will perform a
challenge where, we will crack RSA in the case where it is erroneously
created with two similar prime numbers instead of two random prime
numbers.

To get the most out of this book

You do not need to have programming experience or any special computer.
Any computer that can run Python can do these projects, and you don't need
much math because we'll not be inventing new encryption techniques just to
learn how to use the pre-existing standard ones that don't require anything
more than very basic algebra.

Download the example code files

You can download the example code files for this book from your account
at www. packtpub.com. If you purchased this book elsewhere, you can visit www.pac
ktpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the onscreen
instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/p
acktPublishing/Hands-0On-Cryptography-with-Python. IN case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Cryptography-with-Python
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the

screenshots/diagrams used in this book. You can download it here: https://ww
w.packtpub.com/sites/default/files/downloads/HandsOnCryptographywithPython_ColorImag

es.pdf.

https://www.packtpub.com/sites/default/files/downloads/HandsOnCryptographywithPython_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "If we enter reLLo, it prints out the
correct answer of kHoor."

A block of code is set as follows:

alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
str_in = raw_input("Enter message, like HELLO: ")

n = len(str_in)
str_out = ""

for i in range(n):
c = str_in[i]
loc = alpha.find(c)
print i, ¢, loc,
newloc = loc + 3
str_out += alpha[newloc]
print newloc, str_out

print "Obfuscated version:", str_out

Any command-line input or output is written as follows:

|$ python

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Select System info from

the Administration panel."”

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in
the subject of your message. If you have questions about any aspect of this
bOOk, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com/
submit-errata, Selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packtpub.com With a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
bOOk, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Obfuscation

Python is the best language to start with if you are a beginner, which is what
makes it so popular. You can write powerful code with just a few lines, and
most importantly, you can handle arbitrarily large integers with complete
precision. This book covers essential cryptography concepts; classic
encryption methods, such as the Caesar cipher and XOR; the concepts of
confusion and diffusion, which determine how strong a crypto system is;
hiding data with obfuscation; hashing data for integrity and passwords; and
strong encryption methods and attacks against these methods, including the
padding oracle attack. You do not need to have programming experience to
learn any of this. You don't need any special computer; any computer that
can run Python can do these projects. We'll not be inventing new encryption
techniques just for learning how to use standard pre-existing ones that don't
require anything more than very basic algebra.

We will first deal with obfuscation, the basic idea of what encryption is, and
old-fashioned encryption techniques that hide data to make it more difficult
to read. This latter process is one of the basic activities that encryption
modules use in combination with other methods to make stronger, more
modern encryption techniques.

In this chapter, we will cover the following topics:

e About cryptography

Installing and setting up Python
Caesar cipher and ROT13
base64 encoding

e XOR

About cryptography

The term crypto has become overloaded recently with the introduction of all
currencies, such as Bitcoin, Ethereum, and Litecoin. When we refer to
crypto as a form of protection, we are referring to the concept of
cryptography applied to communication links, storage devices, software,
and messages used in a system. Cryptography has a long and important
history in protecting critical systems and sensitive information.

During World War 11, the Germans used Enigma machines to encrypt
communications, and the Allies went to great lengths to crack the
encryption. Enigma machines used a series of rotors that transformed
plaintext to ciphertext, and by understanding the position of the rotors, the
Allies were able to decrypt the ciphertext into plaintext. This was a
momentous achievement but took significant manpower and resources.
Today it is still possible to crack certain encryption techniques; however, it
is often more feasible to attack other aspects of cryptographic systems, such
as the protocols, the integration points, or even the libraries used to
implement cryptography.

Cryptography has a rich history; however, nowadays, you will come across
new concepts, such as blockchain, that can be used as a tool to help secure
the IoT. Blockchain is based on a set of well-known cryptographic
primitives. Other new directions in cryptography include quantum-resistant
algorithms, which hold up against a theorized onslaught of quantum
computers and quantum key distributions. They use protocols such as BB84
and BB92 to leverage the concepts of quantum entanglement and create
good-quality keys for using classical encryption algorithms.

Installing and setting up Python

Python has never been easy to install. In order to proceed, let's make sure
that we have set up Python on our machine. We will see how to use Python
on macOS or Linux and how to install it on Windows.

Using Python on Mac or Linux

On a macOS or Linux system, you do not need to install Python because it is already
included. You just need to open a Terminal window and enter the python command. This
will put you in an interactive mode where you can execute python commands one by one.
You can close the interactive mode by executing the exit() command. So, basically,

to create a script, we use the nano text editor followed by the name of the file. We then
enter python commands and save the file. You can then run the script with python followed
by the script name. So, let's see how to use Python on macOS or Linux in the following
steps:

1. Open the Terminal on a macOS or Linux system and run the python command.
This opens an interactive mode of Python, as shown in the following screenshot:

test@PPMUMCPUB372:~$ python
Python 2.7.12 (default, Mov 20 2017, 18:23:56)
[GCC 5.4.0 20160609] on linux2

Type "help"”, "copyright”, “"credits" or "license" for more information.

2. When you use the print command, it prints xello right away:

>>> print "Hello"
Hello

3. We will then leave with the following command:

| >>> exit()

4. As mentioned before, to use Python in interactive mode, we will enter the
command as shown:

| $ nano hello.py

5. In the hetto.py file, we can write commands like this:

| print "HELLO"

6. Save the file by pressing Ctrl + X followed by Y and Enter only if you've modified
it.
7. Now, let's type Python followed by the the script name:

| $ python hello.py

When you run it, you will get the following output:

test@PPMUMCPUO372:~5 python hello.py

HELLO

The preceding command runs the script and prints out xeLLo; that's all you have to do if
you have a macOS or Linux system.

Installing Python on Windows

If you have Windows, you have to download and install Python.
Here are the steps which you need to follow:

1. Download Pyﬂ‘lOIl from https://www.python.org/downloads/
2. Run it in a Command Prompt window

3. Start interactive mode with Python

4. Close with exit()

To create a script, you just use Notepad, enter the text, save the file with Ctrl + S, and then
run it with python followed by the script name. Let's get started with the installation.

Open the Python page using link given previously and download Python. It offers you
various versions of Python. In this book, we will use Python 2.7.12.

Sometimes, you can't install it right away because Windows marks it as untrusted:

1. You have to unblock it in the properties first so that it will run, and run the installer
2. If you go through the steps of the installer, you'll see an optional step named Add
python.exe to path. You need to choose that selection

The purpose of that selection is to make it so Python can run from the command line in a
Terminal window, which is called Command Prompt on Windows.

Now let's proceed with our installation:

1. Open the Terminal and type the following command:

| $ python

2. When you run it, you can see that it works. So, now we will type a command:

| print "HELLO"

Refer to the following screenshot:
test@PPMUMCPUB3T72:~% python
Python 2.7.12 (default, Dec 4 2017, 14:58:18)
[GCC 5.4.0 26160609] on LlinuxZ
"help”, "copyright", "credits" or "license" for more information.

=>> print "HELLO"
HELLO

>3

3. We can exit using the exit() command as shown earlier.

https://www.python.org/downloads/

4. Now, if we want to make a script, we type the following command:

| notepad hello.py
5. This opens up Notepad:

M_I hello - Notepad -

File Edit Format View Help
print "HELLO"

6. We want to create a file. In that file, we enter the following command:

| print "HELLO"

7. Then, save and close it. In order to run it, we need to enter the following command:

| $ python hello.py
It runs and prints HeLo.

Usually, when you install Python on Windows, it fails to correct the path, so you have to
execute the following commands to create a symbolic link; otherwise, Python will not
start correctly from the command line:

1. cd c: \windows
2. mklink /H python.exe
3. c: \python27\python.exe

In the next section, we will look at the Caesar cipher and ROT13 obfuscation techniques.

Caesar cipher and ROT13

In this section, we will explain what a Caesar cipher is and how to
implement it in Python. Then, we will consider other shift values, modular
arithmetic, and ROT13.

A Caesar cipher is an ancient trick where you just move every letter
forward three characters in the alphabet. Here is an example:

e Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
o Ciphertext: pEFGHIIKLMNOPQRSTUVWXYZABC

So, HeLLo becomes kHoor.

To implement it, we're going to use the string.find() method. The interactive
mode of Python is good for testing new methods, hence it's easy to create a
string. You can make a very simple script to implement the Caesar cipher
with a string named a1pha for alphabet. You can then take input from the
user, which is the plaintext method, then set a value, n, which equals the
length of the string, and the string out is equal to an empty string. We then
have a loop that goes through n repetitions, finding the character from string
in and then finding the location of that character in the atpha string. It then
prints out those three values so that we can make sure that the script is
working correctly, then it adds s to 1oc (location) and puts the corresponding
character in string out, and again prints out partial values so that we can see
that the script is working correctly. At the end, we print our final output.
Adding extra print statements is a very good way to begin your
programming because you can detect mistakes.

Implementing the Caesar cipher in

Python

Let's go ahead and open the Terminal and follow these steps to implement
Caesar cipher in Python:

1. We will use Python in interactive mode first and then make a string
that just has some letters in order to test this method:

>>>
>>>
0
>>>
1
>>>

str = "ABCDE"
str.find("A")

str.find("B")

exit()

2. Because we understand how the string methods work, we'll exit and go
into the nano text editor to look at the first version of our script:

| $ nano caesari.py

3. When you run the command, you will get the following code:

alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
str_in = raw_input("Enter message, like HELLO: ")

n = len(str_in)
str_out = ""

for i in range(n):
c = str_in[i]
loc = alpha.find(c)
print i, c¢, loc,
newloc = loc + 3
str_out += alpha[newloc]
print newloc, str_out

print "Obfuscated version:", str_out

You can see the alphabet and the input from the user in the
script. You calculate the length of the string, and for each
character, c is going to be the one character on processing,
loc will be the numerical location of that character, newtoc will

be 1oc plus 3, and we can then add that character to string
out. Let's see this.

4. Leave using Ctrl+X and then enter the following command:

| $ python caesari.py

5. When you run this command, you will get the following output:

| Enter message, like HELLO:

6. If we enter HeLLo, it prints out the correct answer of khoor:

test@PPMUMCPUB372:~5 python caesari.py
Enter message, like HELLO: HELLO
0 H 7 180 K

E4 7 KH

L 11 14 KHO

0 14 17 KHOOR
bfuscated version: KHOOR

1
2
3 L 11 14 KHOO
4
0

When we run this script, it takes the input of weLLo and it breaks it up
character by character so that it processes each character on a separate

line. v is found to be the 7th character, so adding s gives me 10, which results
in k. It shows us character by character how it works. So, the first version of
the script is a success.

To clean the code further, we will remove the unnecessary print statements
and switch to a shift variable. We will create a variable shift variable.
Which also comes from raw inputs, but we have to convert it to an integer
because raw input is interpreted as text as you can't add text to an integer.
This is the only change in the script that follows. If you give it a shift value
of 5, you get knoor; if you give it a shift value of 1e, you get rovvy; but if you
put in a shift value of 14, it crashes, saying string index out of range. Here,
the problem is, we've added multiple times to the 1oc variable, and
eventually, we move past z, and the variable is no longer valid. In order to
improve that, after adding something to the variable, we'll check to see
whether it's greater than or equal to 26, and whether 26 can be

subtracted from it. Once you run this, you can use a shift of 14, which will
work. We can use a shift of 24, and it works too. However, if we use a shift

of 44, it's out of range again. This is because just subtracting 26 once when
it's over 26 is not really enough, and the right solution here is modular
arithmetic. If we put % 2, it will calculate the number modulus 26, which
will prevent it from ever leaving the range of o through 2s. It will divide it
by 26 and keep only the remainder, as expected in this case. We're going to
see the modular function many more times as we move forward in
cryptography. You can put in any shift value of your choice, such as see, and
it will never crash, but will turn that into a number between o and 2s.

Let's see how the script works with other shift values:

1. Take a look at the script Caesar:

| $ nano caesar2.py

2. When you run it, you will get the following:

GNU nano 2.5.3 File: caesar2.p

alpha = "ABCDEFGHIJKLMNOPQRSTUVHXYZ"

str_in = raw_input("Enter message, like HELLO: ")

shift = int{raw_input("shift value, like 3: "))

len(str_in)

str_ out = "

for 1 in range(n):
c = str_in[1i]
loc = alpha.find(c)
newloc = loc + shift

str_out += alpha[newloc]

print "Obfuscated version:", str_out

3. This is the script that allows us to vary the shirt value but does not
handle anything about the shift value getting too large. Let's run the

following command:

$ python caesar2.py

4. If you enter reLLo and give it a shift of s, it's fine, but if we run it again
and give it a shift of 2, it crashes:

Enter message, like HELLO: HELLO
Shift value, like 3: 20
Traceback (most recent call last):

File "caesar2.py", line 25, in <module=>
str_out += alpha[newloc]
IndexError: string index out of range
[test@PPMUMCPUB372:~5]

So, as expected, there are some limitations in this one.
5. Let's move on to caesars:

$ nano caesar3.py

6. After running it, we get the following output:

GNU nano 2.5.3

File: caesar3.p

Ellpha = "ABCDEFGHIJKLMNOPQRSTUVHXYZ"

str_in = raw_input("Enter message, like HELLO: ")

shift = int(raw_input("shift value, like 3: "))

n = len(str_in)

str_out = ""

for 1 in range(n):
c = str_1in[1i]
loc = alpha.find(c)
newloc = loc + shift
if newloc == 26:
newloc -= 26

str_out += alpha[newloc]

print "0Obfuscated version:", str_out

caesars attempts to solve that problem by catching it if we
know that the addition causes it to be greater than or equal to
26 and subtracting 26 from it.

7. Let's run the following command:

| $ python caesar3.py

8. We will give it shift characters and a shift of 2e, and it will be fine:

Enter message, like HELLO: HELLO
Shift value, like 3: 28

Obfuscated version: BYFFI

9. If we give it a shift of 4e, it does not work:

Enter message, like HELLO: HELLD
shift value, 1ike 3: 48
Traceback (most recent call last):

File "caesar3.py", line 29, in <module>
str_out += alpha[newloc]
IndexError: string index out of range

There is some improvement, but we are still not able to
handle any value of shift.

10. Let's g0 up tO caesar4:

| $ nano caesar4.py

11. When you run the command, you will get this:

GNU nano 2.5.3 File: caesard4.p

Ellpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

str_in = raw_input("Enter message, like HELLO: ")

shift = int(raw_input("shift value, like 3: "))

h = len(str_in)

str_out = ""

for 1 in range(n):

c = str_in[i]

loc = alpha.find(c)

newloc = (loc + shift)%26

str_out += alpha[newloc]

print "Obfuscated version:", str_out

This is the one that uses modular arithmetic with the percent
sign, and that's not going to fail.

12. Let's run the following command:

| $ python caesar4.py

13. When you run the command, you will get this:

Enter message, like HELLO: HELLO

Shift value, like 3: 48

Obfuscated version: VSZZC
test@PPMUMCPUO372:~5 python caesar4.py

Enter message, like HELLO: HELLO
shift value, 1ike 3: 3888
Obfuscated version: ROVVY
test@PPMUMCPUB3T2:~5S

This is the script that handles all the values of the Caesar shift.

ROT13

ROT13 is nothing more than a Caesar cipher with a shift equal to 13
characters. In the script that follows, we will hardcode the shift to be 1s. If
you run one cycle of ROT13, it changes reLLo to urvys, and if you encrypt it
again with the same process, putting in that urvvs, it'll turn back into HeLvo,
because the first shift is just by 13 characters and shifting by another 13
characters takes the total shift to 26, which wraps right around, and that is
what makes this one useful and important:

1. Now let's look at the ROT13 script using the following command:

| $ nano roti3.py

2. When you run the preceding command, you can see the script file:

GNU nano 2.5.3 File: rotl3.p

Ellpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

str_in = raw_input("Enter message, like HELLO: ")

shift =13

n = len(str_in)

for 1 in range(n):
c = str_in[i]
loc = alpha.find(c)
newloc = (loc + shift)%26

str_out += alpha[newloc]

print "Obfuscated version:", str_out

3. It's just exactly equal to our last Caesar cipher shift, with a script with
a shift of 13. Run the script as shown here:

| $ python roti13.py

The following is the output:

Enter message, 1like HELLO: HELLO

Obfuscated version: URYYE

4. If we enter the message urvve and run that, it turns back into xeLLo:

test@PPMUMCPUO372:~5 python rotil3.py

Enter message, like HELLO: URYYB
Obfuscated version: HELLD

This is important because there are quite a few cryptographic functions that
have this property; where you encrypt something once and encrypt it again,
you reverse the process. Instead of making it more encrypted, it becomes
unencrypted. In the next section, we will cover base64 encoding.

base64 encoding

We will now discuss encoding ASCII data as bytes and base64 encoding
these bytes. We will also cover base64 encoding for binary data and
decoding to get back to the original input.

ASCII data

In ASCII, each character turns into one byte:

e aisesin base 10, and in binaryj, it is ebe1eecee1. Here, you have o in the
most significant bit because there's no 12s, then you have 1 in the next
bit for 64 and 1 in the end, so you have 64 + 1=65.

e The next is & with base ss and ¢ with base 67. The binary for s is
ebe1eece10, and for c, it is ebe1eeee11.

The three-letter string asc can be interpreted as a 24-bit string that looks like
this:
0b01000011/01000010 01000001

We've added these blue lines just to show where the bytes are broken out.
To interpret that as base64, you need to break it into groups of 6 bits. 6 bits
have a total of 64 combinations, so you need 64 characters to encode it.

The characters used are as follows:

o A;B.C...Z Tor0-25

o ab,c ..z for26-51

o 0,1,2,..9 for52-61

c +/ for 62 and 63

We use the capital letters for the first 26, lowercase letters for another 26,
the digits for another 10, which gets you up to 62 characters. In the most
common form of base64, you use + and / for the last two characters:

e 'ABC'is 0b01000001 01000010 01000011
® 6-bit groups 0b01000q OlOlOOi 001001‘ 000011
e Decimal 16 20 9 3
e BASE64 Q u J D

If you have an ASCII string of three characters, it turns into 24 bits
interpreted as 3 groups of 8. If you just break them up into 4 groups of 6,
you have 4 numbers between 0 and 63, and in this case, they turn into q, u, J,
and o. In Python, you just have a string followed by the command:

>>> "ABC".encode("base64")
'QUJD\n'

This will do the encoding. Then add an extra carriage return at the end,
which neither matters nor affects the decoding.

What if you have something other than a group of 3 bytes?

0 The = sign is used to indicate padding if the input string length is not a multiple of 3
bytes.

If you have four bytes for the input, then the base64 encoding ends with two
equals signs, just to indicate that it had to add two characters of padding. If
you have five bytes, you have one equals sign, and if you have six bytes,
then there's no equals signs, indicating that the input fit neatly into base64
with no need for padding. The padding is null.

You take aeco and encode it and then you take asco with explicit byte of zero.
x00 Means a single character with eight bits of zero, and you get the same
result with just an extra A and one equals, and if you fill it out all the way
with two bytes of zero, you get capital » all the way. Remember: a capital a
is the very first character in basess. It stands for six bits of zero.

Let's take a look at base64 encoding in Python:

1. We will start python up and make a string. If you just make a string with
quotes and press Enter, it will print it in immediate mode:

>>> "ABC"
'ABC'

2. Python will print the result of each calculation automatically. If we
encode that with basess, we will get this:

>>> "ABC".encode(""base64")
'QUJD\n'

3. It turns into quso with an extra courage return at the end and if we make
it longer:

>>> "ABCD".encode("base64")
'QUJIDRA==\n'

4. This has two equals signs because we started with four bytes, and it
had to add two more to make it a multiple of three:
>>> "ABCDE".encode("base64")
'QUJIDREU=\n"'

>>> "ABCDEF".encode("base64")
'QUIDREVG\n'

5. With a five-byte input, we have one equals sign; and with six bytes of
input, we have no more equal signs, instead, we have a total of eight
characters with basesa4.

6. Let's go back to asco with the two equals signs:

>>>"ABCD".encode("base64")
'QUIDRA==\n"'

7. You can see how the padding was done by putting it in explicitly here:

>>> "ABCD\x00\x00".encode("base64")
'QUJIDRAA=\n'

There's a first byte of zero, and now we get another single equals
sign.
8. Let's put in a second byte of zero:

>>> "ABCD\x00\x00".encode("base64")
'QUJIDRAAA\N'

We have no padding here, and we see that the last characters are all a,
indicating that there's been a filling of binary zeros.

Binary data

The next issue is handling binary data. Executable files are binary and not
ASCIL. Also, images, movies, and many other files have binary data. ASCII
data always starts with a zero as the first bit, but bases4 works fine with
binary data. Here is a common executable file, a forensic utility; it starts
with mze and has unprintable ASCII characters:

[NON &3 AccessData Registry Viewer_1.8.3.exe

0|4D5A9000 03000000 04000000 FFFF0OQQQ||(MZé T
16 |B8000000 00000000 40000000 00000000 | |1 @

32| 00000000 00000000 00000000 00000000
4800000000 00000000 00000000 00010000
64 | OE1FBAQE 00B409CD 21B8014C (D215468 J ¥ 0! LO!Th
80(69732070 726F6772 616D2063 616EGEGF ||is program canno
96| 74206265 2072756E 20696E20 444F5320||t be run in DOS
112|6D6F6465 2EQDADOA 24000000 00000000 || mode. $

As this is a hex viewer, you see the raw data in hexadecimal, and on the
right, it attempts to print it as ASCII. Windows programs have this string at
the start, and this program cannot be run in DOS mode, but they have a lot
of unprintable characters, such as rr and e, which really doesn't matter for
Python at all. An easy way to encode data like that is to read it directly from
the file. You can use the with command. It will just open a file with filename
and mode read binary with the handle r and then you can read it. The witn
command is here just to tell Python to open the file, and that if it cannot be
opened due to some error, then just to close the handle and then decode it
exactly the same way. To decode data you've encoded in this fashion, you
just take the output string and you put .decode instead of .encode.

Now let's take a look at how to handle binary data:

1. We will first exit Python so that we can see the filesystem, and then
we'll look for the ac file using the command shown here:

>>> exit()
$ 1s Ac*
AccessData Registry Viewer_1.8.3.exe

There's the filename. Since that's kind of a long block, we
are just going to copy and paste it.

. Now we start Python and ctear the screen using the following
command:

$ clear

. We will start python again:

$ python

. Alright, so, now we use the following command:

>>> with open("AccessData Registry Viewer_1.8.3.exe", "rb") as f:
. data = f.read()
. print data.encode("base64")

Here we enter the filename first and then the mode, which is
read binary. We will give it filename handle of r. We will
take all the data and put it in a single variable data. We could
just encode the data in basess, and it would automatically
print it. If you have an intended block in Python, you have to
press Enter twice so it knows the block is done, and then
bases4 encodes it.

. You get a long block of bases4 that is not very readable, but this is a
handy way to handle data like that; say, if you want to email it or put it
in some other text format. So, to do the decoding, let's encode
something simpler so that we can easily see the result:

>>> "ABC".encode("base64")
'QUJD\n'

. If we want to play with it, put that in a ¢ variable using the following
command:

>>> ¢ = "ABC".encode("base64")
>>> print c
QuUJD

7. Now we can print ¢ to make sure that we have got what we expected.
We have quip, which is what we expected. So, now we can decode it
using the following command:

>>> c.decode("base64")
'ABC'

bases4 i Not encrypting. It is not hiding anything, but it is just another way
to represent it. In the next section, we'll cover XOR.

XOR

This section explains what XOR is on single bits with a truth table, and then
shows how to do it on bytes. XOR undoes itself, so decryption is the same
operation as encryption. You can use single bytes or multiple byte keys for
XOR, and we will use looping to test keys. Here's the XOR truth table:

® 0 0 (0]
® 0 1 1
¢ 1 A0=1
¢ 1 1 (0]

If you feed in two bits and the two bits are the same, the answer is o. If the
bits are different, the answer is 1.

0 XOR operates on one bit at a time. Python indicates XOR with the » operator.

The truth table shows how it works. You feed in bits that are equally likely
to be o and 1 and XOR them together, then you end up with 50% ones and
zeros, which means that XOR does not destroy any information.

Here's the XOR for bytes:

® A 0b010006001
® B 0b01000O10
® XOR 0b000O0O11

A is the number 65, so you have 1 for 64 and 1 for 1; & is 1 larger, and if you
XOR the two of them together, all the bits match for the first 6 bits, and
they're all o. The last two bits are different, and they turn into 1. This is the
binary value s, which is not a printable character, but you can express it as
an integer.

The key can be single byte or multibyte. If the key is a single byte, such as
B, then you use the same byte to encrypt every plaintext character. Just keep
repeating the key over and over:

Single-byte and Multi-byte XOR

e Single-Byte XOR: Use the same key for every byte

e 'ABC' 0b01000001§01000010 01000011
e 'B'repeated ObOlOOOOlOiOlOOOOlO 01000010
e XOR ObOOOOOOlliOOOOOOOO 00000001

Repeat & for this byte, s for that byte, and so on. If the key is multibyte, then
you repeat the pattern:

o Multi-Byte XOR: Repeat a pattern

e 'ABC' 0b01000001/01000010/01000011
e 'BC' repeated 0b01000010/01000011/01000010
e XOR 0b00000011/00000001/00000001

You use s for the first byte, ¢ for the next byte, then again s for the next
byte, ¢ for the next byte, and so on.

To do this in Python, you need to loop through the bytes of a string and
calculate an index to show which byte you're on. Then we enter some text
from the user, calculate its length, then go through the indices from 1 up to
the length of the string, starting at e. Then we take the text byte and just
print it out here so you can see how the loop works. So, if we give it a five-
character plaintext, such as weLLo, it just prints out the characters one by
one.

To do the XOR, we'll input a plaintext and a key and then take a byte of text
and a byte of key, XOR them together, and print out the results

Note %1ten(key), which is what prevents you from running off the end of the
key. It will just keep repeating the bytes in the key. So, if the key is three

bytes long, this will be modulus three, so it will count as e, 1, 2, and then
back toe 1 2 0 1 2, and so on. In this way, you can handle any length of
plaintext.

If you combine uppercase and lowercase letters, you'll often find the case
that XOR produces unprintable bytes. In the example that follows, we have
used HEeLLo, kitty, and a key of qrs. Note that some of these bytes are readily
printable and some of them contain strange characters, such as Esc and Tab,
which are difficult to print. Therefore, the best way to handle the output is
not to attempt to print it as ASCII, but instead print it as hex encoded
values. Instead of trying to print the bytes one by one, we combine them
into a cipher variable, and in the end, we print out the entire plaintext, the
entire key, and then the entire ciphertext in hex. In this way, it can correctly
handle these strange values that are difficult to print.

Let's try this looping in Python:

1. We open the Terminal and enter the following command:

| $ nano xori.py

2. When you run it, you will get the following output:

GNU nano 2.5.3 File: xorl.p

Bext = raw_input("Enter text: ")
n = len{text)

for 1 in range(n):
t = text[i]
print t

3. This is the first one that is xor1.py, S0 we input text from the user,
calculate it's length, and then just print out the bytes one by one to see
how the loop works. Let's run it and give it HeLLo:

test@PPMUMCPUB3T72:~S python xoril.py
Enter text: HELLO

4. It just prints out the bytes one by one. Now, let's look at the next XOR
2:

—
GNU namo 2.5.3 File: xor2.p

Bext = raw_input("Enter text: ")
key = raw_input("Enter key: ")
n = len{text)

in range(n):
text[1i]
key[i%len(key)]
x = ord(k) » ord(t)
print t, k, x, chr(x)

&

This inputs text and key the same way and goes through each byte of text,
picks out the correct byte of key using the modular arithmetic, performs the
XOR, and prints out the results.

5. So if we run the same file here, we take veLLo and a key as shown:

$ nano xor2.py
$ python xor2.py

So, the output is as follows:

Enter text: HELLO
Enter key: qrs

57

55

63 ¢
61
61

It calculates the bytes one by one. Note how we get two
equals signs here, which is the reason why you would use a

multiple by key because the plaintext is changing but the key,
is also changing and that pattern is not reflected in the
output, so it's more effective obfuscation.

6. Clear that and look at the third xor2a.py file:

GNU nano 2.5.3 File: xor2a.p

xt = raw_input("Enter text: ")
= raw_1input("Enter key: ")
len{text)

i in range(n):
text[i]
key[i%len(key)]
= ord(k) ~ ord(t)
cipher += chr(x)
print text, key, cipher.encode("hex")

You can see that this handles the problem of unprintable
bytes.

7. So, we create a variable named cipher, combine each byte of output
here, and at the end, we encode it with hex instead of trying to print it
out directly:

test@PPMUMCPUB372:~5 python xor2a.py
Enter text: HELLO Kitty

Enter key: qrs
HELLO Kitty qrs 39373f3d3d533ai1be7esob

8. If you give it veLLo and then text a key of qrs, it will give you the
plaintext veLLo kitty, the key, and then the hexadecimal-encoded output,
which can easily handle funny characters, such as o 7 and e s. In the
next section, you'll see challenge 1—the Caesar cipher.

Challenge 1 — the Caesar cipher

After a Caesar cipher review, we'll have an example of how to solve it and
then your challenge. Remember how the Caesar cipher works. You have an
alphabet of available characters, you take in the message and a shift value,
and then you just shift the characters forward that many steps in the
alphabet, wrapping around if you go around the end. The script we end up
with works for any shift value, including normal numbers, such as s, or
even numbers that are larger than 26; they just wrap around and can
scramble any data you put it.

Here's an example:

1. For ciphertext, you can decipher it by just trying all the shift values
from o to 25, and one of them will just be readable. This is a simple
brute-force attack. Let's take a look at it.

Here, in Python, go to the caesara script, that we had before.
It takes in a string and shifts it by any value you specify. If
we use that script, we can run it as follows:

test@PPMUMCPUB3T72:~5 python caesar4.py
Enter message, like HELLO: HELLO

Shift value, 1like 3: 3
Obfuscated version: KHOOR

2. Then, if we put in eLLo and shift it by s, it turns into kxoor.
3. If we want to crack it, we can use the solution script as follows:

GNU nanmo 2.5.3 File: caesars.

alpha "ABCDEFGHIJKLMNOPQRSTUVHXYZ"
str_in raw_input("Enter ciphertext: ")

for shift in range(26):

n = len{str_in)
strout = ""

for 1 in range(n):
c = str_in[i]
loc = alpha.find(c)
newloc = (loc + shift)%ze6
str out += alpha[newloc]

print shift, str out

4. So, if we use that script, we can run it:

test@PPMUMCPUB372:~5 python caesar5.py
Enter ciphertext: KHOOR
KHOOR
LIPPS
MJQQT
NKRRU
OLSSV
PMTTH
QNUUX
ROVVY
SPWWZ
TQXXA
URYYE
VSZZC
2 WTAAD
XUBBE
YVCCF
ZWDDG
AXEEH
BYFFI
CZGG]
DAHHK
EBIIL
FCJIM
GDKKN
HELLO
IFMMP
JGNNQ
test@PPMUMCPUD3T2:~5

]
1
2
3
4
5
6
7
8
9
1
»
1

5. If we put it in kHoor, it'll shift it by a variety of values, and you can see
the one that's readable at 23, which is HeLio. So, the example we
discussed before of longer ciphertexts and so on will become readable
down at 3, where you see its peMONSTRATTON:

Enter ciphertext: ABILKPQOXQFLK
ABILKPQOXQFLK

1 BCKMLQRPYRGML
2 CDLNMRSQZSHNM
DEMONSTRATION
EFNPOTUSBUIPO
FGOQPUVTCVKQP
GHPRQVWUDWLRQ
HIQSRWXVEXMSR
TIRTSXYWFYNTS
JKSUTYZXGZOUT
KLTVUZAYHAPWYU
LMUWVABZIBOQWY
MNVXWBCAJCRXW
NOWYXCDBKDSY X
OPXZYDECLETEZY
PQYAZEFDMFUAZ
QRZBAFGENGVBA
SACBGHFOHWCE
STBDCHIGPIXDC
TUCEDIJHQJYED
UVDFEJKIRKZFE
VHEGFELISLAGF
WXFHGLMKTMBHG
XYGIHMNLUNCIH
YZHIINOMVODII
ZATKJOPNHWPEKD

6. Your challenge is to decipher this string: myxqekpevkpsyxc.

In the next section, we'll have a challenge on base6a4.

Challenge 2 — base64

After a basess review, we'll perform an example to show you how to decode
some obfuscated text, and then we have one simple and one hard challenge
for you.

Here is the basess review:

e Encode with .encode("base64")

e Decode with .decode("base64")

bases4 encoding text makes it longer. Here's the sample text to decode:

| U2FtcGx LiHRleHQ=
It decodes into the string sample text. Let's take a look at that.
Refer to the following steps:
1. If you run python in immediate mode, it will do four simple jobs:
| $ python

2. So, if we take aec and encode it with basess, we get this string:

>>> "ABC".encode("base64")
'QUJD\n'

3. If we decode that with vases4, we get back to the original text:

>>> "QUJD".decode("base64")
'ABC'

4. So, the challenge text is as follows, and if you decode it, you get the
string sample text:

>>> "U2FtcGxliHR1leHQ=".decode("base64")
'Sample text'

5. So, that will do for simple case; your first challenge looks like that:

| Decode this: VGhpcyBpcyB0b28gZWFzeQ==

6. Here's a long string to decode for your longer challenge:

Decode this:
VWtkc2EwbE1iSFprVTJeF16S1ZaMWxUUW50aU1qbDNVSGM5UFFVvPQo=

This long string is so long because it's been encoded by bases4 not just once
but several times. So, you'll have to try decoding it until it turns into
something readable. In the next section, we'll have Challenge 3 — XOR.

Challenge 3 — XOR

In this section, we will review how XOR works and then give you an
example, and then present you with two challenges.

So, here is one of the XOR programs we discussed before:

GNU nano 2.5.3 File: xor2.p

Bext = raw_input("Enter text: ")
key = raw_input("Enter key: ")
len{text)

i in range(n):
text[1i]
key[i%len(key)]

x = ord(k) ~ ord(t)
print t, k, x, chr(x)

You input arbitrary texts and an arbitrary key, and then go through the bytes
one by one, picking out one byte of text and one byte of key before
combining them with XOR and printing out the results. So, if you put in
teceo and qrs, you'll get encrypted stuff, encrypted with XOR.

Here's an example:

e Ciphertext: snw{fzs

® Keyisb

It will scramble into exavpie. So, this undoes encryption; remember that
XOR undoes itself.

If you want to break into one of these, one simple procedure is just to try
every key and print out the results for each one, and then read the key is
readable.

So, we try all single-digit keys from o to 9.

The result is that you feed in the ciphertext, encrypt it with each of these,
and when you hit the correct key value, it will turn into readable text.

Let's take a look at that:

 GNU nano 2.5.3 File: xor3.py

text = raw_input{"Enter text: ")
n = len(text)

for k in "0123456789":

clear =

for 1 in range(n):
t = text[i]
x = ord(k) » ord(t)
clear += chr(x)
print k, clear

Here's the decryption routine, which simply inputs texts from the user and
then tries every key in this string, e through ¢. For each one of those it
combines, think the XORed text into a variable named c1ear, so it can print
one line for each key and then the clear result. So, if we run that one and put
in my ciphertext, it gives us 10 lines.:

|test@PPMUMCPUB372:~5 nano xor3.py
|test@PPMUMCPUB372:~5 python xor3.py
Enter text: snw{fzs
8 CAGKVIC

B_FJWKB

A\EITHA

@]DHUI@

GZCORNG

EXAMPLE
DY@LQMD
KVOCABK

1
p
3
r
5 F[BNSOF
6
7
8
9 JWNB_CJ

We just scanned through these lines and saw which one becomes readable,
and you can see the correct key and the correct plaintext at 6. The first
challenge is here:

e Decipher this: kquht}

e Keyis asingle digit

This is similar to the one we saw earlier. The key is a single digit, and it will
decrypt into something readable. Here's a longer example that is in a
hexadecimal format:

e Decipher this: 70155d5c¢45415d5011585446424c

e Key is two digits of ASCII

The key is two digits of ASCII, so you'll have to try 100 choices to find a
way to turn this into a readable string.

Summary

In this chapter, after setting up Python, we covered the simple substitution
cipher, the Caesar cipher, and then basess encoding. We gathered data six
bits at a time instead of eight bits at a time, and then we looked at XOR
encoding, where bits are flipped one by one in accordance with the key. We
also saw a very simple truth table. The challenges you performed were
cracking the Caesar cipher without the key, cracking basess by reversing it to
get the original bytes, and cracking XOR encryption without knowledge of
the key with a brute-force attack trying all possible keys. In chapter 2,
Hashing, we will cover different types of hashing algorithms.

Hashing

Hashing has two main purposes: the first is to put a fingerprint on a file so
you can tell whether it has been altered, and the second is to conceal
passwords so you can still recognize the correct password and enable login
but a person who steals the hash cannot easily recover the password from it.

In this chapter, we will cover the following topics:

MD5 and SHA hashes

Windows password hashes

Linux password hashes

Challenge 1 — cracking Windows hashes
Challenge 2 — cracking many-round hashes
Challenge 3 — cracking Linux hashes

MD5 and SHA hashes

After explaining what a hash function is, we will deal with MD5 and then
the SHA family: SHA-1, SHA-2, and SHA-3. We will also acquire a bit of
information about cracking hashes.

What are hashes?

As mentioned earlier, one point of using hashes is to put a fingerprint on a
file. You can take all the bytes in the file and combine them together with a
hash algorithm, and this creates a fixed-links hash value. If you change any
part of the file and recalculate the hash, you get a completely different value.
So, the idea is that if you have two files that are supposed to be identical,
you can calculate the hash of each file, and if the hash of both files match,
then the files are identical.

A very common hash is MD5; it's been around for a couple of decades. It's
128 bits long, which is rather short for a hash function, and it's reliable
enough for most purposes. People use it to put a fingerprint on downloads,
and malware samples, and all sorts of things, and they are also sometimes
used to obscure passwords. It's not a perfect hash function: there are some
collisions known, and there are some algorithms that, at the expense of some
computer time, can create collisions, which are pairs of files that hash to the
same value. So, if you do find two files with MD5s that match, you do not
know with complete certainty that they are identical files, but they

usually are.

It's very easy to calculate them in Python. You just import the hash library
and then proceed with the calculation. You call the hash library to create a
new object. The first parameter is the algorithm used, which is MD5. The
second parameter is the contents of the data to be hashed.

Here, we will use HeLLo as an example, and then you need to use the hex-
digest at the end or it will just print an address to the data structure instead of
showing you the actual value. We will use the hash of weLLo, MD5, and a
hexadecimal and it is 128 bits long. So, that's 128 over 4, or 32, hexadecimal
characters, and if you add another character to the weLco, like an exclamation
point the hash changes completely; there's no resemblance between the hash
of one value and the hash of the next.

The Secure Hash Algorithm (SHA) was designed to be an improvement on
MD?5, and SHA-1 had no collisions until about a year ago, when some
researchers at Google Inc. found out how to make collisions in SHA-1, so
careful people are switching to SHA-2. There is another algorithm approved
by the National Institute of Standards, called SHA-3, which almost
nobody is using because as far as anyone expects, SHA-2 will remain secure
for a very long time to coms. But, if something were to happen to
compromise SHA-2, SHA-3 will be available for us to use. Both SHA-2 and
SHA-3 have various lengths, but the most common lengths are 256 and 512
bits.

You can calculate SHA-1 and SHA-2 hashes easily in Python, but SHA-3 is
not commonly used and it's not part of this hash library yet. So, if you use
SHA-1 for the algorithm, you get a SHA-1 hash. It looks like an MD?5 hash,
but it's longer. Then there are SHA-256 and SHA-512, which are both SHA-
2 hashes. You can see that, although they're more secure, they are much
longer and somewhat less convenient:

>>> import hashlib

>>> hashlib.new("shal", "HELLO").hexdigest()
'c65f99f8c5376adadddc46d5cbef5762f9e55eb7!

>>> hashlib.new("sha256", "HELLO").hexdigest()

'3733cd977ff8eb18b987357e22ced99f46097F31ecb239e878ae63760e83e4d5"
>>> hashlib.new("sha512", "HELLO").hexdigest()
'33df2dcc31d35e7bc2568bebf5d73ale43a0e624b651basef3157bbfb728446674a231b8b6e97fa1e570c3b1de6d6c677541b262ac22afdas878fa2zb591c7fos’

So, let's take a look.

Open the Terminal and execute the python command to start the Python
Terminal:

test@PPMUMCPUB372:~5 python
Python 2.7.12 (default, Nov 20 2017, 18:23:56)
[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

You can then run the following commands:

>>> import hashlib
>>> hashlib.new("md5", "HELLO").hexdigest()
'eb61eead90e3b899c6bcbe27ac581660"

>>> hashlib.new("md5", "HELLO!").hexdigest()
'9ac96c64417b5976a58839%eceaa77956"

=>>>

You have to import hashtib. Then, you can add hashtib.new. The first parameter
is the algorithm, which is mas, in this case. The next parameter is the data to
hash, which is ueLLo, and then nhexdigest is added to see the hexadecimal value.
So, there's the hash of weLro, and if we put another character at the end

such that it reads HeLLoa, then we get a completely different answer:

>>> hashlib.new("md5", "HELLOa").hexdigest()
'f017243288124f851a43c07328318733"

>>> I

If we want to use a different algorithm, we can just put in SHA-1:

>>> hashlib.new("shal", "HELLO").hexdigest()
'c65f99f8c5376adadddc46d5cbcf5762f9e55eb7!

=2 I

Now we get a long hash, and, if we add shazse as character, we get an even
longer hash:

>>> hashlib.new("sha256", "HELLO").hexdigest()
'3733cd977ff8eb18b987357e22ced99f46097f31ecb239e878ae63760e83e4d5"'

>>>

These are enough hashes for almost any purpose.

If you have the hash value of something and you want to calculate the data it
came from, in principle, there is not a unique solution. In practice, though,
for short objects like passwords, there is. So, if someone uses an mps function
to obscure a password, which is done by some old web applications, then
you can reverse it by guessing passwords until you find a match. There is no
mathematical way to undo a hash function, so you just have to make a
library. In the example of the wos hash of weLLo, if you just made a series of
guesses, you'd get the right answer. That's how hash cracking works; it's not
a complicated idea, it's just kind of inconvenient.

We can take the MD5 hash of weLLo and keep guessing:

test@PPMUMCPUB372:~S$ python

Python 2.7.12 (default, Nov 20 2017, 18:23:56)

[[GCC 5.4.0 20160609] on linux2

[Type "help", "copyright", "credits" or "license" for more information.

>>> import hashlib
>>> hashlib.new("md5", "HELLM").hexdigest()

'078975f7ae348a9b44872ef330f52cd5
>>> hashlib.new("md5", "HELLN").hexdigest()
'42a761cb17ea0ad153a2244553f1ed02’
>>> hashlib.new("md5", "HELLO").hexdigest()
|'eb6leead90e3b899c6bcbe27ac581660'"

=== I

If we were guessing words, we might have to guess millions of words to get
down to the value shown, but if we are able to guess the right value, we'll
know it's right when the hash matches. The only thing that determines the
difficulty of this is how many hashes you can calculate per second, and MD5
and the SHA family are designed to calculate very fast, so you could actually
try millions of passwords per second with them. In the next section, we'll
talk about Windows password hashes.

Windows password hashes

In this section, we will see how to get hashes with Cain and then how MD4
and Unicode work. Then, we'll discuss cracking hashes with Google and
cracking hashes with wordlists.

Getting hashes with Cain

Cain is a free hacking tool that can harvest Windows hashes from a running
operating system. In order to test it, we'll make three accounts on Windows
Server, the very latest version of the Windows operating system. You can use
the user command at the Command Prompt to do this. You can add a user
named sohn with a password peswerd, a user named paul with a password, and a
user named ringo with password pesword9gs:

B8 Administrator: Command Prompt

\Users\Administrator>net user /? able P@swérd
e syntax of this command is:

USER
[username [password | *] [options]] [/DOMAIN]
username {password | *} /ADD [options] [/DOMAIN]
username [/DELETE] [/DOMAIN]
username [/TIMES:{times | ALL}]
username [/ACTIVE: {YES | NO}]

C:\Users\Administrator>net user john P@sw@rd /add
The command completed successfully.

C:\Users\Administrator>net user paul P@sword /add
The command completed successfully.

C:\Users\Administrator>net user ringo P@swe@rd999 /add
The command completed successfully.

If you run Cain, it can harvest the hashes. The following screenshot shows
the three users and their hashes:

File View Configure Tools Help

SHOHERD | +y R LI PEE=02R 02 0

+

|é% Decoders I? Network Iﬂ? Sniffer I@‘J Cracker I@ Traceroute IM CCDU I"‘z}‘;J Wireless]éb Query I

fef Cracker User Name [tMPas... | <.| NTPas... | LM Hash | NT Hash

3R LM & NTLM Hashes | 3¢ Administrator *empty * * AAD3B435B51404EEAAD3B435B51404EE 89551 ACFFE895768E489BB3054AF94FD
@B NTLMvZ Hashes (0) |§%DefaultAccount *empty™ * *empty® AAD3B435B51404EEAAD3BA35B51404EE 31D6CFEOD16AE931B73C59D7EDCOBICO
.. 4 MS-Cache Hashes (0 | §% Guest *empty* * “empty® AAD3B435B51404EEAAD3BA35BS1404EE 31D6CFEOD16AEG31B73C59D7EOCOS9CO
& PWLfiles (0) X john “empty* * AAD3B435B51404EEAAD3B435B51404EE 4649843CEEAC228E43667D160AB1D994
..JHl Cisco I0S-MD5 Hash | X paul *empty* * AAD3B435B51404EEAAD3BA35B51404EE 4649843 CEEAC228E43667D160AB1D994
] Cisco PIX-MD5 Hash | X ringo “empty ™ ~ AAD3B435B51404EEAAD3B435B51404EE SC2CBBR86DAACT223FDA57DBFO4C9373
.5 APOP-MDS5 Hashes (

The LM Hash section is an obsolete system that is no longer used by any
version of Windows, so it just contains a dummy value that has no
information. The actual hash used by Windows when you log in is called the
NT Hash. Notice that if two users have the same password, they have
exactly the same hash: a 464 value. That is one of the weaknesses in this
system. It is a very weak and old password system, unfortunately.

MD4 and Unicode

Here's the algorithm Microsoft uses. It takes the password and encodes in
Unicode instead of ASCII, and then when you run it through MD4 (which is
a very old algorithm, even older than MD5), it produces the NT hash value:

>>> hashlib.new("md4", "P@swOrd".encode("utf-16le")).hexdigest()
'4649843ceeac228e43667d160ab1d994'

=22 I

The reason Unicode is used is because Microsoft is an international
operating system that allows you to have passwords in languages such as
Chinese and Japanese that do not encode with 8-bits per character but 16-bits
per character.

Cracking hashes with Google

Since password hashes have no variation and any two users with the same
password will have the same hash, all the hackers that had cracked wordlists
for the last 24 years have put their results on the internet, resulting in a
situation where you can just Google frequently used password hashes:

Go gle 4649843CEEAC228E43667D160AB1D994 L Q

All Maps Videos Images Shapping More Settings Tools

1 result (0.32 seconds)

rockyou: 10761001 - 10762000 - SpeedHasher.com
https://speedhasher.com/wordlists/rules/rockyou/10761/passwords.htm ~
NTLM (no LM), aad3b435b51404eeaad3b4 35b51404ee:4649843ceeac228e43667d160ab1d994. MD5,

58881¢cb93191e35afe30a0d8aadae148. SHA- ...

Input P@swOrd

NTLM 90f2d3b527a304d0aad3b435b51404ee:4649843ceeac228e43667/d160ab1d994

If you just put a hash into Google, you'll often find that somebody has
already cracked it for you and put on the internet. For instance, here's this
one pesword that's got a known result, so you can crack it. That simple method
works for a great many passwords but this technique does not work for the
password, we used for the user ringo, which is raswerdogs.

Cracking hashes with wordlists

So, in a case where the passwords cannot be cracked, you need to calculate it
yourself:

in "6/7/89":

"P@swOrd99" + ¢

hashlib.new("md4", p.encode("utf-161e")).hexdigest()
print p, h

P@swOrd996 b3ef8f811b362bf13045afd2f5716baf
P@swOrdo97 ffeb5fe830aa227428073fcblaal5ch9
P@swOrd998 9f630141e0b30b0cc41a4dd1352bd9obd
P@swOrd999 5c2cbb886d4ac7223fd457dbf94c9373

=== I

You just use the same procedure. Make a series of guesses, hash them, and
hunt for your answer. If your list of guesses does eventually hit the right
value, you'll of course find it here. So, you can see the password p@swordoge
with sc2c.. ..

It's very simple, so let's give it a try in Python.

In the Terminal window, we'll enter the python command. Next we'll import
the hashtib library:

test@PPMUMCPUG372:~$ python

Python 2.7.12 (default, Nov 20 2017, 18:23:56)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import hashlib
>>> hashlib.new("md4", "P@swOrd".encode("utf-161e")).hexdigest()
'4649843ceeac228e43667d160ab1d994"

=22 I

Thus, you can see the line that does the encoding. We put in the password,
encode utf-161e, which is the Unicode; then, we hash it with MD4 and
express it as hexdigest.

That's number for reswerd. Now, if we try to get to the ringo user, we need to
have a list of two hashes to try, which will need to have some values that

eventually reach the right value:

=>> hashlib.new("md4", "P@s0rd”.encode("utf-161le")).hexdigest()
'8af4abf869c655bdec3ed709cOcf9244"

»>> hashlib.new("md4",
'ffebs5feB30aaz27428073fcblaal5c59"
»>>> hashlib.new("md4", "PRswOrd998".encode("utf-161le")).hexdigest()

"P@swBrd997" .encode{"utf-161le")).hexdigest()

'9f630141e8b30bBcc41a4dd1352bdabd’
>»> hashlib.new("md4", "P@swOrd999".encode("utf-16le")).hexdigest()

'5c2cbb886d4ac7223fd457dbf94c9373"

e

If we are just counting up sequentially using 997, 99s, and 999, we'll get that
sczc. .. value that we are looking for.

Linux password hashes

In this section, we will first discuss how to get the hashes from an operating
system, and then look at the salting and stretching procedures that make
Linux hashes much stronger. We will then discuss the specific hashing
algorithm used by modern versions of Linux, and finally look at cracking
hashes with wordlists and Python.

Here, we have created three users to test the software in much the same way
as we did earlier on Windows. sohn and paut have the same password and
rRingo has a different password:

student@ubuntu:~$%$ sudo tail -n 3 /etc/shadow
john:6qIo@foX5%$r7kx5FnTYMWANoz8zacMRdHjxiFs9%aaKs j2n0bF02S. q86ATOVCxIKH/ kqdeDrT
FHIXvSXQ5ZDEmcEzX2NCik/:17447:0:99999:7:::
paul:6yoHEm7/a$XUBKbMwYa3V5QPLGLAtsL3yNiGD7Bx5v1lgrn. sVQfxFp@aLGNPFW510QYTvtMLE
MNGC. tpBtwu/GPM4SDhp5W,. : 17447:0:99999:7:::
ringo:6y0b@ojJ/$CIHCzygDglhhR1fI3nRIADiIqvA@XUycbWH1e4QQ/QCt/beFyzFe98AJVoAr/a
LYz2ShRVYwfYY.cKVnnupcP. :17447:0:99999:7:::

You get the hashes from the /etc/shadow file, from which we will print out the
last three records. So, you will see sohn, paut, and ringo, and after each
username comes ss, which indicates that it is a type 6 of password, which is
the most modern and secure form. Then there is a long, random string of
characters that goes up to the next dollar sign, and then an even longer
random string of characters, which is the password hash itself.

The first thing you can see is the password hash, which is much longer and
more complicated than the Windows password hash. The next thing to
observe is that even though sohn and rau1 have the same password, they have
completely different hashes, because it adds a random satt to each one before
hashing them in order to obscure the fact that these passwords are the same,
making the passwords much stronger. Salting is the procedure of adding
random characters before hashing; stretching is also employed here. Instead
of just using one round of MD4, it uses 5,000 rounds of SHA-512, which
simply makes it take much more CPU time to calculate the hash. The point

of this is to slow down attackers who are trying to make dictionaries of
password hashes.

You can find the details of the method in the /etc/10gin.defs file, which shows
you that modern versions of Linux using crypt methods s+as12 and seee
rounds:

GNU nano 2.5.3 File: login.defs

/etc/login.defs - Configuration control definitions for the login package.

Three items must be defined: MAIL_DIR, ENV_SUPATH, and ENV_PATH.

If unspecified, some arbitrary (and possibly incorrect) value will
be assumed. All other items are optional - if not specified then

the described action or option will be inhibited.

Comment lines (lines beginning with "#") and blank lines are ignored.
Modified for Linux. --marekm
REQUIRED for useradd/userdel/usermod
Directory where mailboxes reside, _or_ name of file, relative to the
home directory. If you _do_ define MAIL_DIR and MAIL_FILE,
MAIL_DIR takes precedence.

Essentially:
- MAIL_DIR defines the location of users mail spool files

(for mbox use) by appending the username to MAIL_DIR as defined
below.

- MAIL_FILE defines the location of the users mail spool files as the
fully-qualified filename obtained by prepending the user home
directory before SMAIL_FILE

NOTE: This is no more used for setting up users MAIL environment variable
which is, starting from shadow 4.0.12-1 in Debian, entirely the
job of the pam_mail PAM modules
See default PAM configuration files provided for
login, su, etc.
This is a temporary situation: setting these variables will soon
move to /etc/default/useradd and the variables will then be
no more supported
Read 341 lines (Warning: No write permission
Write Out QY Where Is WY Cut Text @8 Justify Cur Pos
WY Read File Replace &Y Uncut Text @l To Spell Wl Go To Line

Thus, the procedure requires you to combine sait with the password. You
perform an algorithm that includes 5,000 rounds of SHA-512 hashing. It
actually has more than 20 steps that involve taking two hashes together and
mixing the bits together, but it's a little more complicated than just repeating
the same hash algorithm over and over.

We'll use the passtive library. Before using it in Python, you have to install it
with the pip install passtib command. Once you've got it, you can import the
shas12_crypt module. Here's how you use it:

>>> import hashlib
>>> from passlib.hash import sha512_crypt
>>> sha512_crypt.using(salt="qlo0foX5", rounds=5000).hash("P@swlrd")

'$65qIo0foX55r7kx5FnTYMWANoz8zacMRdHjx1Fs9aaKsj2n0bF0zS.q86Af0OVCxJIKH/kqdcDr TFH9XvSXQ5ZDEmc
zX2NCik/"

>>>

Let's start the Python Terminal. Then we can import the passtib library as
shown earlier, because we've already put it in pip install.

Now, we can calculate the first one, which will use the satt value from the
shadow file and hash it, as shown in the previous screenshot.

As you can see, we get the correct results (starting r7k). And, if we were
doing a dictionary attack, we would have a series of password guesses as
shown:

>>> sha512 crypt.using(salt="qIlo@foX5", rounds=5000).hash("P@swlra")
'$65qI00foX55DX/.gSq2C8NdzBKIOYn21WTLMw3nQwlpRebYEBaasuyE1oRFIMk9tF1cHI1C9Ecmdnk6QZFuYnkUXWk
.6J1ssbo@'

>>> sha512_crypt.using(salt="qlo@foX5", rounds=5000).hash("P@swlrb")
'$65qI00foX551Y16BYzTCgWTdR15ErYB/EoL4ImlwwPBMgDrLDSVomCvLG83Id8oAAkrFixSzxoKtmu79qBLa6IDK6
irIMwLjo'

>>> sha512_crypt.using(salt="qIo@foX5", rounds=5000).hash("P@swlrc")

'$65qIo0foX55FINTG110aaR2Z7MadTzSG90WaL57vC8]ta. /DKLwIT6vhHA19BXThneeocx@e5hYKTIIIrT17u0zkB
WNwGhdQ/ '

>>> sha512_crypt.using(salt="qIlo0foX5", rounds=5000).hash("P@swOrd")

'$65qI00foX55r 7kx5FnTYMWANoz8zacMRdHjx1Fs9aaKsj2n0bF0zS. q86Af0OVCxJIKH/kqdcDr TFHOXvSXQ5ZDEmcE
ZX2NCik/'

>>>

It's just a question of trying them until you get the one that matches.

Challenge 1 — cracking Windows
hashes

After a review of Windows hashing and an example of 1-digit hashing, we
will give you two challenges—one with a 2-digit password and one with a 7-
digit password. Here's how Windows hashes look in Python:

>>> hashlib.new("md4", "P@sw@rd".encode("utf-16le")).hexdigest()
'4649843ceeac228e43667d160ab1d994'

=22 I

The algorithm uses hashtib to do an MD4 for the hash of the password, but
before you do that, encode in Unicode which is utf-161e, and then calculate
the nexdigest of the results to get the long number, The number starts with 464,
in this case, which is a Windows password hash.

Thus, you can write a program that will try all the characters in this string,
which will consist of 10 digits, and then calculate the hash for each one of
them. You will be left with a simple dictionary with 10 values:

GNU nano 2.5.3 File: challa.p

import hashlib

for cl in "0123456789":
p=ocl
hash = hashlib.new("md4", p.encode("utf-161le")).hexdigest()
print p, hash

You can crack this 1-digit hash using a 1-digit password as follows:

test@PPMUMCPUO372:~5 python challa.py
7bc26760a19fc23e0996daa99744ca80
69943c5e63b4d2c104dbbcc15138b72b
8f33e2ebe5960b8738d98a80363786b0
5f18a8499cdd4f43d89424ad39ce9af7
e30f7b55215aa69b2920e3715e0392a30
94f23786fe827d0a3c0029dc5eb27a65
c7c0f6f33f4e34bcOb595fc942cb6di3
b3cc27d02c5e59ac39384440fdfffofd
99ce74551ba6bfb12eac366090e26032
90ad6éab281c4ae016e5a7564c307a7e8

est@PPMUMCPUO372:~$ [

(8]
1
2
3
4
5
6
7
8
9
t

So, here's a challenge. The password is a 2-digit one between 00 and 99, and
this is the hash:

Hash:
o b5875F2524BBE45F3504236B75A9A483D

So, you have to make a loop that tries 100 possible values.

The next one is a 7-digit password, and this is the hash:

Hash:
o 0342DB37D0OA0SA6GEA2284584876CCEDO

So, you'll have to try 10 million values. That will only take a few seconds,
and that's why Windows password hashes are so very weak—you can try
many millions of them per second.

Challenge 2 — cracking many-round
hashes

After a review of how MD5 and SHA work in Python, we will see what a
many round hash is, and then you will get two challenges to solve.

MD5 and SHA are both easy to calculate:

test@PPMUMCPUO372:~S python

Python 2.7.12 (default, Dec 4 2017, 14:50:18)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import hashlib

>>> hashlib.new("md5", "password").hexdigest()
'5f4dcc3b5aa765d61d8327deb882cf99"

>>> hashlib.new("shal", "password").hexdigest()
'5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8'’

=22 I

From the nashtib library, you just need to use the hashtib.new method and put
the name of the algorithm in the first parameter, the password in the second
parameter, and then add the hex-digest to it to see the actual result in
hexadecimal instead of just an address to the object. To do many rounds, you
just repeat that process.

You need to put the password in nh and then use the current n, to calculate the
next h and repeat this over and over and over. Here's a little script that prints
out the first 10 rounds of a multi-round MD5 hash:

test@PPMUMCPUG372:~S python

Python 2.7.12 (default, Dec 4 2017, 14:50:18)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import hashlib

>>> p = "password"”

>>> h = p

>>> for 1 in range(10):

h = hashlib.new("md5", h).hexdigest()

print i+1, h

5f4dcc3b5aa765d61d8327deb882cf99
696d29e0940a4957748fe3fc9efd22a3
5a22e6c339c96c9c0513a46e44c39683
e777a29bee9227c8a6a86e0bad61fc40
7b3b4de00794a247cf8df8e6fbfel9bf
20ffe80a69fbe8ced4d848eef461b3e39
553e17202f23e50f30883ee4bb581001
c66bfc320be01d07d4c326dead254cb9
97265ae89ab509a0e969a024b73f8ele
10 e36b70041d8f1609aa40b9ebba4363cf

>>>

1
2
3
4
5
6
7
8
9

This technique is called stretching, and it's used by stronger password
hashing routines, such as the Linux password hashes that we've seen in
previous sections.

Here's your first challenge: a 3-digit password hashed 100 times with MD5.
Find it from this hash:

c09145ad46b058fba82e4218169c7121

Here's another challenge for you. In this one, you have an unknown number
of rounds with SHA-1, but it's not more than 5,000. So, you just have to try
all values and find the 3-digit password of the results in this hash.

Challenge 3 — cracking Linux
hashes

After a review of Linux hashes, we'll show you your challenge.

Linux hashes are salted and stretched, and there are various versions of
them. We are covering the current version, which is version 6, that is, the
most secure form:

from passlib.hash import sha512_crypt

s = "12345678"

p = "password"
sha512_crypt.using(salt=s, rounds=5000).hash(p)

'$6$123456785I18tr4xFAC6/TtiYWdpOLWEjQre2LcYm2jdSMNLQDIyqRY . cKo7KMD5/HpzVVFKpUQLIekr/Vw.0dImn
tRM85Fg/ "

>>>

The hash is a long string starting with the dollar sign; the s indicates the
version, then you have a dollar sign followed by sa1t, and another dollar sign
followed by the hash. To calculate them in Python, you need to import a
special SHA-512 crypt library, as you use the format shown earlier.

Here's your third challenge: a 3-digit password in this format. The sait value
is penguins and the nash is this long mess starting with a r instance.

Summary

In this chapter, we covered the MD5 and SHA-1 hashing algorithms, the
Windows password hashing algorithm, and the Linux password hashing
algorithm. In the challenges, you cracked a Windows password hash to
recover a plaintext password, and another password hash using an unknown
number of MD5 and SHA-1 rounds. Finally, you cracked the Linux
password hashes to recover the plaintext password.

In chapter 3, Strong Encryption, we will cover two main methods of strong
encryption, that is, AES and RSA.

Strong Encryption

Strong encryption conceals data even against determined adversaries, such
as enemy military agencies, if done correctly. The two main methods of
strong encryption are AES and RSA, which are both approved by the US
government. You do not need to have programming experience to learn this,
and you don't need any special computer; any computer that can run Python
can do these projects. Also, you don't need much math because we are not
going to be inventing new encryption techniques just to learn how to use the
standard pre-existing ones that don't require anything more than very basic
algebra.

In this chapter, we will cover pre-existing:

e Strong encryption with AES
ECB and CBC modes
Padding oracle attack
Strong encryption with RSA
What's next?

Strong encryption with AES

In this section, we will take a look at the Advanced Encryption Standard
(AES), private key encryption, key and block size, how to influence AES,
and Python and confusion and diffusion.

AES is the encryption standard approved by the United States National
Institute of Standards and is considered very secure. It's approved even for
the storage of secret military information. It is private key cryptography,
which is the kind of cryptography that has been used for thousands of years
in which both the sender and the receiver use the same key. It's a block
cipher, so the input data has to be put in blocks that are 128-bits long, and a
block of plaintext is encrypted with a key, producing a block of ciphertext:

Plaintext

|

Encryption

|

Ciphertext

key

There are three key sizes: 128, 192, and 256-bits. The most common type of
AES is the 128-bit key size, and that's what we'll use in this example. In
Python, it's quite easy to use.

Firstly, you need to import the aes module from crypto cipher, then you need a
16-byte key and plaintext, which is some integral multiple of 16 bytes. You
will then create a new AES object with the key and then calculate it with
cipher encrypt. This gives you a 16-byte string, which may be unprintable,
so it's best to encode it as hex to print it out; and, of course, if you decrypt it,
you get back to your original plaintext. This has many desirable

cryptographic properties, and one of them is confusion. If you change a bit
of the key, it changes the entire ciphertext.

So, if we change the key to kex, you will see that all of the ciphertext
changes. This is what you want. Two very similar keys produce completely
different results, so you cannot find any pattern in the results that you could
use to deduce information about the key.

Similarly, diffusion is a desirable property, where if you encrypt something
twice with the same key but you change even one bit of the plaintext, again,
the entire ciphertext changes. See the following example:

>>> key = "Sixteen byte key"

>>> cipher = AES.new(key)

>>> cipher.encrypt("Secret: 16 bytes").encode("hex")
'433811598181fed6d59e265249f8c6a8’

>>>
>>> cipher.encrypt("Secret: 16 bytet").encode("hex")
'90c106728883ece4a2470a352c0865d2"

Here we have bytes and we get the same 433 ending in eas. If we change the
last letter to t, you can see that it starts with sec and ends with sdz; that is, it
completely changes.

Let's take a look at that in Python:

1. Open the Terminal window and start python. We will enter the following
command, as shown in the sceenshot:

test@PPMUMCPUO372:~5 python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.8 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
> from Crypto.Cipher import AES
key = "Sixteen byte key"

plain = "Secret: 16 bytes"

cipher = AES.new(key)

ciphertext = cipher.encrypt(plain)
print ciphertext.encode("hex")
811598181fed6d59e265249f8c6a8

2. We import the aes module, where we have a 16-byte key and a 16-byte
plaintext. We have created an AES object, encrypted it, and then we
have printed out the hex value over here:

433Bi1593181fed6d59&265249f3c638
=5

3. Now, we change the key:

ey = "Sixteen byte k
cipher = AES.new(key)
ciphertext = cipher.encrypt(plain)

print ciphertext.encode("hex")
907cd312776T66727efb29d197494

Here we go up to the key line and change that to say z, and
then do it again, creating a new AES object with that key.
Performing the encryption and printing out the results again,
you see everything is different.

It now starts with b, ends with 4, and has completely changed.

4. Now, we'll leave the key where it is and change the plaintext. Let's
change t to r. Now if we encrypt that and print out the result in
hexadecimal, once again, everything has changed; even though this is
the same key as the one above it:

>=> plain = "Secret: 16 bytfs"
>»> ciphertext = cipher.encrypt(plain)

>>> print ciphertext.encode("hex")
A51b203ab814fA975955352268ed3812

So, this shows both confusion and diffusion, which are desirable properties.
In the next section, we'll discuss ECB and CBC modes.

ECB and CBC modes

We'll compare Electronic Codebook (ECB) and Cipher Block Chaining
(CBC) and show you how to implement AES CBC in Python.

ECB

In the ECB method, each block of plaintext is encrypted with the key
separately, so if you have two blocks of plaintext that are the same, they will
result in identical ciphertext:

Plaintext Plaintext Plaintext
key !} key + key 1
—— Encryption __.I Encryption —— Encryption
L W L
Ciphertext Ciphertext Ciphertext

If you have something like an image here with large areas of solid colors

such as gray and black and then you encrypt it, you'll just get different colors
but the pattern won't change:

Original Encrypted with AES-ECB

That's not good. You can still see that this is a picture of a penguin, and that's
not what most people expect out of encryption. You expect the encryption to
conceal the data so attackers looking at the encrypted data can't tell what the
message is, and here that property is not present.

Thus, CBC is considered the best solution to this problem.

CBC

In addition to the key, you add an initialization vector, which is XOR'd with
the plaintext before encryption. Then for the next block, you take the
ciphertext produced by encryption and use it as the initialization vector for
the second block. The output of that is used as the initialization vector for
the third block. Thus, even if the inputting plaintext is the same in every
block, the ciphertext will be different in each block:

Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]

| 3 (] [) D D | I 9] I D 5 i e 0 1O
Initialization Vector (IV) % %
5 I O I
block cipher block cipher block cipher
ey encryption Key encryption ney encryption

4 i . I I IS I T I I O 5 O

Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]

Cipher Block Chaining (CBC) mode encryption

This results in far more obfuscation:

Original Encrypted with AES-CBC

You can see that the penguin is now completely invisible and all the bytes
are just random, so this is preferred from almost every purpose.

To do it in Python, here's how we did the previous AES, which was the EBC
mode. By default, you don't specify the mode.

If you want to use CBC mode, you put the following command:

from Crypto.Cipher import AES
key = "Sixteen byte key"

iv = "Initialization v"

plain = "Secret: 16 bytfs"

cipher = AES.new(key, AES.MODE_CBC, iv)
cipher.encrypt(plain).encode("hex")
aae623c4b4zbb3b8011dded45e0fdc7l’

AES mode CBC when you create the cipher object. You also have to provide
an initialization vector, which can be 16 bytes, just like the key. If you
encrypt one block of 16 bytes of text, there's no obvious difference in the
result because of the initialization vector, but it's just a block of hexadecimal.
To see the effect of this, you need to make the plaintext longer. When you
encrypt it, you get a blob of hexadecimal. That's the ECB mode, which does
not remove all the patterns in the data. Here's the CBC mode with the same
repeating input. As you can see, the output has no pattern, and does not
repeat however far you go. So, it much more effectively conceals the data.

Let's take a look at that. We start Python in the Terminal, and then add this
code:

test@PPMUMCPUB372:~S$ python

Python 2.7.12 (default, Dec 4 2017, 14:50:18)

[GCC 5.4.6 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.
from Crypto.Cipher import AES

key = "Sixteen byte key"

plain = "Secret: 16 bytes"

cipher = AES.new(key)

ciphertext = cipher.encrypt(plain)
print ciphertext.encode("hex")
B11598181fed6d59e265249T8c6a8

So, you can see the 16-byte key and the 16-byte plaintext AES in ECB
mode. We encrypt it and print the answer.

If we want to make it longer, we add this:

1lain3

ecret: 16 bytfsSecret: 16 bytfsSecret: 16 bytfs'

You can multiply a string object in Python and if you just print it out, you'll
see it's just the same thing three times.

Now we can encrypt that ptaina:

>>> ciphertext = cipher.encrypt(plain3)
print ciphertext.encode("hex")
afe6ac36a4503a3d3388fdbaBe6d1628b31a513bd5252e5f079d714b3ab99b5a84c2d7c04be121fdf9e9fe2cedd2b

When we print that out, it'll have that repeating pattern for 33. Now, if we
change the mode, we'll need an iv:

iv = "1111222233334444"
cipher = AES.new(key, AES.MODE CBC, iv)

ciphertext = cipher.encrypt(plain3)
print ciphertext.encode("hex")

We just need 16 bytes, so we'll just 16 bytes to iv. Next, we create a new aes
object. In the iv now, we encryp ptains again, and we print out the result
again.

You see it has s1f, and you can see that there's no longer any repetition. So,
this is a much more effective way to encrypt things if you really want to
obscure the input.

Padding oracle attack

In this section, we will see how padding works in the PKCS # 7 system and then show
you a system with the pabpine error message. Plus, we'll also deal with the padding oracle
attack, which makes it possible to craft ciphertext that will decode 20 plaintext we want.

Here is the encryption routine:

Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]
LETT AT IVVTTRTITTN] LETITIVITUTRVUNTIN 5 i 5
Initialization Vector (IV)
I R . -
Key block cipher Ke block cipher Ke block cipher
encryption y encryption y encryption
EEEEEEREFLEE LR EEEEEEEEE LR U] L O
Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]

Cipher Block Chaining (CBC) mode encryption

We'll have three blocks of data, each 16-bytes long. We'll encrypt the data with AES in
CBC mode, so in comes the initialization vector and the key. You produce three blocks
of ciphertext, and each one of the blocks after the first uses the output of the previous
encryption routine as an initialization vector to XOR with the plaintext.

Here's how PKCS#7 padding works:

If one byte of padding is needed, use o1

If two bytes of padding are needed, use o202

If three bytes of padding are needed, use o3e3e3
e And so on...

If we have a message here that is only 47-bytes long, then we can't fill the last block, so
we have to add a byte of padding. You could use a variety of numbers as the padding,
but in this system, we use one binary value one, if you have one byte of padding needed
if you have two, you use two for both bytes and three for all three bytes for three bytes
of padding and so on. This means that, if we decrypt it, we'll have three blocks of
ciphertext. We decrypt it and we'll get the 47-byte message:

Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]
HEAAAEE EEREEREEE [EFTEEEEEEEEERE SR

block cipher block cipher block cipher
Key —= : - : - :
ey decryption Key decryption Key decryption
Initialization Vector (V)
V28 7 T 9 1 A) —_——— —
[[[[Y0 ([0 Y S [[()) [O [) LETT T VIO TN T | e
Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

The last byte here will always be the padding byte, and that will be e-1, a binary value of

1.

Here is an example of a vulnerable system that you can attack. This is just using the
same techniques we've made before where we just encrypt things with AES and CBC
mode, which you can save in pador.py, and then you can just import it to make it easy to
use and more realistic. There have been real systems that use this. So, we import,
encrypt, and decrypt methods so that we can put in a 47-pipe message and encrypt it.
We'll get a long blob of hexadecimal output.

If we decrypt that, we will get our original input plus one byte of 1 at the end. x01 is
the Python notation for a single byte with the binary value of 1. If you modify the input
by keeping the first 47 bytes alone and changing the last byte to a or 65 and decrypt it,
you'll get a padding error. This error message may seem harmless, but in fact it makes it
possible to completely subvert the encryption.

Let's take a look at that:

1. Open the Terminal and start python.
2. We will enter the following command:

test@PPMUMCPUB372:~5 python
Python 2.7.12 (default, Dec 4 2017, 14:508:18)

[GCC 5.4.0 20168609] on linux2

Type "help"”, "copyright”, "credits" or "license” for more information.

=>> from pador import encr, decr

»>> a = "This is simple sentence is forty-seven bytes long."
» ¢ = encr(a)
» print c.encode("hex")

3. We will encrypt and decrypt routines. You can see we have the plaintext. When we
encrypt 47 bytes of plaintext, we get a long binary blob:

941dc2865db9204c40dd6f0898che0086Tc6d915e288ed4ef223766a02967b81c6c431778a40f517e9e4a
297e102b1ec93713bf89750cdfa80e

4. When we decrypt that, we get the following:

=>> decr(c)

'This is simple sentence is forty-seven bytes long.\x®

We can see that it in fact added the single byte of padding at the end of it.

Now, we should do the deformed one. If we set our modified text equal to the original
plaintext going up to character 47 and then we add "a" at the end, when we decrypt it, we
get 'PADDING ERROR':

>> mod = a[:47] + "A"
>> decr(mod)
'PADDING ERROR'

e

That is the error message that we can exploit to subvert the system. So, here's how the
padding oracle attacked works change:

1. Change ciphertext [16:31] to any bytes
2. Change ciphertext [31] until padding is valid
3. Intermediate [47] must be 1

Here is a diagram of CBC:

Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]

| I 5 Y T D D O EEEEEEEEEEEEEEEN I I I N

Key block cipher Ke block cipher Ke block cipher intaniiadistel 1]
decryption Y decryption y decryption
Initialization Vector (IV) OITTTITITITTITITIT7TIe
5 (1 D o —— _____________'69

EEEE R I ()))) DEEREDOEEEDOREES |

Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

Leave the first 16 bytes of the ciphertext alone. Change this to anything you like, such
as all-As, and then decrypt that. What will happen is, because you changed the bytes in
the second block, the second block will turn to random characters, and so will the third
block. But it'll give you a padding error unless the, very last byte of the very last block
is one. So, you brute force it. You change a byte to all 256 possible values until the byte
becomes 1, and when that happens, you know this value is 1. You know this value
because it's the one that did not give you a padding error message, and you can XOR
them to determine this intermediate value right here. So, proceeding byte by byte to the
left, you can determine these intermediate values. If you know them, you can put in
ciphertext that will make anything you like appear in the third block. So, you can defeat
the encryption even though you don't know the key or the initialization vector.

Here's the code that does it:

>>> prefix = c[0:16] + "A"*15
==> for 1 in range(256):
mod = prefix + chr(i) + c[32:]

if decr(mod) != "PADDING ERROR":
print 1, "is correctly padded"

And will get the following output:

255 is correctly padded
>»> 234 A 1
235

We set the ciphertext equal to the first original 16 bytes of ciphertext and then 15 bytes
of a. Then we vary the next byte through all possible 256 values and add the third block
of data unchanged. After that, we look to see when we no longer get a padding error,
and that will be 234, so the intermediate value is 234 XOR one:

1. Now, if we want to get the next byte back, we have to arrange two bytes of
padding, both of which will be 2, as shown:

e Two bytes of padding:
o ciphertext[46] =ciphertext[47] =2
o Set ciphertext[31] =235"22 =233

So, the final two bytes of ciphertext 46 and 47 will both be two. So, we set
ciphertext 31 to the value needed to create two there. Now that we know
the intermediate value, we can calculate it.

2. We vary ciphertext se until the padding is valid and that will determine the next
byte of the intermediate:

>>> prefix = c[0:16] + "A"*14
>>> for 1 in range(256):
mod = prefix + chr(i) + chr(233) + c[32:]

if decr(mod) != "PADDING ERROR":
print i, "is correctly padded”

3. Leave the first block unchanged and add 14 bytes of a vary the next byte. Leave the
byte at the chosen value of 233 so you know that the final byte of the decrypted
output will be 2, and when the padding error message goes away, you can take that
number, XOR it with 2, and you get the next value of the intermediate. So, now we
can make messages. We would have to repeat this more times to get more bytes,
but for this demonstration, we'll settle for a message just one letter long. We'll

make an » followed by a binary value of 1 for valid padding. That's our goal, and in
order to do that, all we have to do is set ciphertext so and 31 to these chosen values:
® ciphertext[30] = ord("A") A 113
® ciphertext[31] = 16 235

4. Since we know the intermediate values are 113 and 235, we just need to XOR these
intermediate values with the values we want.

5. We will create ciphertext that will decrypt to a message ending in A and a binary 1,
so let's see that go. Now, this one is a little complicated, so we've chosen to save
some of the text here in a text editor so we can do it stage by stage:

from pador import encr, decr

a = "This simple sentence i3 forty-seven b
c = encr(a)
print c.encode ({"hex™)

decr(c)

mod = c[0:47] + chr(&5)
decr (mod)

from pador import encr, decr

prefix = c[0:16] + "A"*15
|for i in range(258) :

| if decr(mod)
prinkt i, "i

prefix = c[0:18] + "A"*l4
|for i in range(25§) :
mod = prefix + chri(i) + chr(233) + c[32:]

| if decrimod) !=
print i, "is corre

prefix = c[0:18] + "A"*l4

c30 = ord("4") * 113

c3l =1 ~ 235

mod = prefix + chr({c30) + chric31l) + c[32:
decr (mod)

6. Here's our Python:

>>> from pador import encr, decr

>>> prefix = c[0:16] + "A"*14
>>> for i in range(256):
mod = prefix + chr(i) + chr(233) + c[32:]
if decr(mod) != "PADDING ERROR":
print i, "is correctly padded"

7. Alright, we import the library, which we already had anyway. Here we leave the
first 16 bytes unchanged and fill in 15 bytes with a. Then, we have the loop that
changes the next byte's every possible value and leave the third block of data
unchanged. We run through the loop until we no longer get a padding error. This
tells us that 234 is the value that gives us correct padding:

| 234 is correctly padded

8. So, we take 234 to the 1, which tells us the intermediate value, all over cut the
indentation right, so it's 234 XOR 1. This tells us that the value is 23s. That's the
intermediate value. For the next bit, use a very similar process, so now we have 14
bytes of padding. We will vary the next byte, and the byte after that is 233, which is
chosen to always give us a 2 at the end. So, when we run this loop through, it is
correctly padded at 11s:

‘ 115 is correctly padded

9. So, 115 XOR 2 is 113:

>>> 115 N 2
113

Therefore, 113 is the next byte of intermediate value.

10. Now that we know these two numbers, 235 and 113, we can control the last two
bytes of plaintext. Now we will keep the first block of input data unchanged. We
have 14 bytes of padding:

>>> prefix = c[0:16] + "A"*14
>>> ¢30 = ord("A") N 113

>>> ¢31 = 1 N 235 mod = prefix + chr(c30) + chr(c31) + c[32:]
>>> decr(mod)

11. We choose to make a and a binary one with the two bytes, 235 and 113. When we
create the modified ciphertext and decrypt it, we get the following message:

"This simple
sent\xc6\x8d\x12;y.\xdc\xa2\xb4\xa9)7c\x95b\xd1I\xd0 (\xbb\x1f\x8d\xebR1lY ' \x17\xf6wA\Xx

The first block of data is unmodified. The second block and most of the third block have
changed to random characters, but we controlled the last two bytes and we could make
them say anything we wanted. So, we are able to create ciphertext that will decrypt at
least partly two values we choose, even though we don't know the key or the
initialization vector.

Strong encryption with RSA

In this section, we will cover public key encryption, the RSA algorithm, and
implementation in Python.

Public key encryption

In public key encryption, we solve this problem: Google, for example,
wants to receive confidential data from users, such as passwords and credit
card numbers, but they don't have a secure communication channel; what
they have is the public internet, and any data being sent might be
eavesdropped upon by any number of attackers. Thus, there's no way to
deliver a shared secret key, and symmetric encryption algorithms, such as
AES, cannot solve this problem. That's where public key encryption comes
in.

Google creates a key pair. They keep the private key secret and don't tell
anyone, and they publish public key so anyone can know it. Everyone who
wants to send secrets to Google can encrypt them with the public key and
send them over an insecure channel because the only one who can decrypt
them is Google, who has the private key. Mailboxes work like this.
Anybody can go to the mailbox and put mail in the top slot, but the bottom
door is locked, and only the postal worker with the private key can take the
mail out. The private key and the public key must be related, but they have
to be related by a one-way function so that it's easy to calculate the public
key from the private key, which is what Google has to do when they first set
up their key pair. But it has to be very difficult to calculate the private key
from the public key, so it's safe to publish the public key and no one's going
to find the private key.

RSA algorithm

There are various one-way functions that can be used for this purpose, but
in RSA, the function is factoring a large number:

e Private key 4 is made from two large prime numbers: p and q
e Public key is the product of n = p * q, and and arbitrary value e
e Ifp and q are large, factoring » into p and q is very difficult

If you multiply the two prime numbers p and 4 together to create their
product n, it is a well-known difficult problem to factor n into p and . And if
p and q are large enough, it becomes essentially impossible. This is the one-
way function. You can easily multiply p and q to create the public key n, but
knowledge of the public key cannot be used to determine p and q practically:

e Public key: This is two numbers, (n,e)

e ¢ can be any prime number, often 65537
e Encryption: y = x® mod n
e Decryption: x = y? mod n

e x is plaintext, y is ciphertext

So, the public key is n, which is the product of two prime numbers and
another arbitrary number, e, which is often just this value es,537. Anyone
who wishes to secretly send their plaintext, x, raises it to the power of e,
modulus n, and sends that scrambled stuff over an insecure channel, such as
the internet, to the recipient. The recipient has the private key so they can
find the decryption key, 4, and they take the ciphertext to ¢ modulus n, and
that turns into the decrypted message. The decryption key is calculated this
way:

® phin = (p-1) * (g-1)

® d*e = 1 mod phin

Since Google knows the p and q secrets, they can calculate this number phin
which is p - 1, times q - 1 and then they choose a decryption key so that d

times e is 1 modulus rhi of n. Nobody else can do this calculation because
they do not know the values of p and q. So, in Python, you can import the rsa
module and then generate a key of whatever length you like. In this
example, we have used 2048 bits, which is the current National Institute of
Standards recommendation. Then, they have a public key. There's a
message to encrypt and you encrypt it, and the result is this very long
ciphertext, which is as long as 204s bits. ciphertext is long and the
calculations are very slow, so you do not normally send a long message
with this method. What you do in RSA is just send a secret key, and then
you use AES to encrypt everything after that point to make the calculations
faster. This chapter covers something called textbook RSA, which contains
many of the essential ingredients but is not really secure enough for real
use, because you have to add a padding that is specified in RFC 8017. This
adds a hash value, a mask, and padding to the message and protects the key
from some attacks. Let's take a look at this in Python.

Implementation in Python

Here is how we can implement what we've talked about in Python:

1. We start up python and then add the following code:

test@PPMUMCPUB3T72:~5 python
Python 2.7.12 (default, Dec 4 2017, 14:50:1B)
[GCC 5.4.0 26160689] on linux2

Type "help"”, "copyright”, "credits" or "license" for more information.
»»> from Crypto.PublicKey import RSA
>»> key = RSA.generate(2048)

=232

2. The last step shown takes around 2 to 4 seconds just to generate the
key; that's because it had to find two large prime numbers, and these are
very difficult calculations:

>>> publicKey = key.publickey()
>>> plain = 'encrypt this message'

=>> ciphertext = publicKey.encrypt(plain, 0)[0]
>>> print ciphertext.encode("hex")

3. It has to guess a number and test it, and typically, it has to try more than
a hundred guesses for each of these large prime numbers, so this
process is very time-consuming. However, it happens automatically,
and now we can encrypt the message with the key, producing this very
long ciphertext:

4ac8816ed69452a9f574deee72173a8881db6cfe5bc8bf6c11513105ccccO6e4446Tdd6d19146694deb507caB6cffadc9c3d214578902f062cee337417fclec2Tac
Bece9ab225deac588a9c9191c3e14147dd3656e1ddecd4dd2601dbida678f5122b77436609cc1fd356e5f33fa91adf22fefbbs2af140189a9ee75b8dcdes85ca691e

535f1ea303b3836b0d0eb142662bb3ad064b660952049b276ec2baB3efd6T9eb7b39696c16cd01882f2f4ea9cc62f47c5beabbb090915e3c4fc2ff644913286372e
82fa735b90dboc1d9b39933db7cfff1497498aac2e184e679b66566676175317ab8e91dd71db7698cBal19c70be30e2c9aB5ad9666ce206cf82f7578

4. Now, we could test this to see whether we change one bit of the
message or take the plaintext and change that last letter to an r. If we
encrypt that, the results will be similar to the following:

>>> plain = 'encrypt this messagf'

>>> ciphertext = publicKey.encrypt(plain, 0) [0
. ciphertext = publicKey.encrypt(plain, 0) [0

keyboardInterrupt

>>> ciphertext = publicKey.encrypt(plain, 0) [0]

>>> print ciphertext.encode ("hex")

5. Now, we print the results:

1dc722865cc796a47de57bf94ff531c1b87127f15f5cOfblebdf7e31f0292acOc38ledc2badf608080fe60018a8779d472d44c7ab34bb5dfoe744b5eeafed320dc7
bas4eddbde2cfoc6888debacse3da3b27e561929a56245739033dfd9e5b49baa6eB5e6825556257f7c76632606fe3934cadd1aas5f98a2dba44f972aa2eff718cack

24ceab784cB8b767eba2110e7061a4fdf243302732aaf26398ad6fccc3aceld1d42f73c6870d426Fc446984cd646c73751b8Fb1351d9568e2c1ad8e5dac9915511bc
74313c4567d855a552bc9dbd1db27b474753e713520e80631474778845117368615df15786a2a360256e002cf7bafe3ee85cbda68098a371e0f 4633

As you can see, all sac go to 1dc, and then it ends at 578 to e33. This is the
desirable property of strong encryption. Any change in the input changes all
of the output clipping approximately half the bits.

Challenge — cracking RSA with
similar factors

In this section, we will cover topics such as large integers—in Python and the
decimal library. We will also take a look at an example of factoring a large
number and then two challenges for you to solve.

Large integers in Python

Python can do multiplication and division—and a contented multiplication
and division of arbitrarily large integers with complete precision:

>>> 3 = 1001
>>> a*a
1062001

>>> a = 10%*100 + 1

>>> 3

1000006000EE00DEOEEOO000EREOIL

>>> a*a
1000008000E0E0A0000E0E0E0R00AEEO00200000000000000000000000000000!
000080600600000081L

>>> 1

If we have 1001 and then we calculate 1001 squared, we get the right answer,
of course; and even if we take a number like 10+*100 + 1, it correctly gets that
number a hundred places with a 1 at each end. Now, if we square that
number, it again gets it correct, all the way to the one at each end.

So, for simple integer operations, Python's precision is unlimited. However,
if we want to square root, we need to import a math library:

== 3 10**100 + 1
=>> b a*a
>»» import math

>>> math.sqrt(b)
le+160

e

The math library does not keep any arbitrary number of places, as you can see
in the preceding code. If we take 10 **100 + 1 and square it, then take the
square root, we don't get 1e **100 + 1. We get 10 ** 100, which means it
rounded off to some number of places less than 1ee, and that's fine for many
purposes. However, it's not fine for what we want to do here, which is factor
large integers.

In order to do that, you use the decimat library, and we will import it as
shown:

=> from decimal import *
>> 3 = 10*%*100 + 1

-

Decimal(b).sqrt()

Decimal('1.000000000000000000000000000E+100")

>>> getcontext().prec = 200

»>> Decimal(b).sqrt()
Decimal('10001

As you can see, we have imported the decimat library and set value to a as 1e
+100+ 1. Here b equals to a squared, and then instead of calculating the square
root of b with the math library, you calculate the decimal value of » with the
decimal library. Use the square root method of that and this gives you again
the wrong answer, because by default, the decimat library rounds things off.
But if you set the precision to be higher, you get exactly the right answer,
and that's why the decimat library is better for our purposes. This
getcontext().prec command lets us set it to keep enough places to be as precise
as we want.

All right, so, you wouldn't be able to factor a large number in the general
case, and that's what makes RSA secure. But, if a mistake is made by using
numbers and can be predictable in some way, then RSA can be cracked:

Example:

o 10000000000000000016800000000000000005031

>>> n = 10000000000000000016800000000000000005031

>>> getcontext().prec = 50

>>> Decimal(n).sqrt()
Decimal('100000000000000000083.99999999999999998987500000000")

Here the mistake is using two prime factors that are close together instead of
choosing independent random numbers for the two prime factors. So, this
large number is the product of two prime factors, and so you can factor it.
So, if we put that number in a value called n, we set the precision to se places
and calculate the square root. We find that the square root is 1 followed by
many zeros, and that is ended at s3 +a fraction.

Now, if the number is the product of two prime numbers, and the two prime
numbers are close together, one number must be less than the square root
and the other number must be larger than the square root.

So, if we simply start at the square root and try numbers close to the square
root by jumping back by two every time, we will eventually find the prime
factor, and we do:

=>> for p in range(100000AAOBOEABOAAAAE3, 10ARNABOGEOLNEAROABEO3A,

-2):

print p, n%p

100000000000000000083
1060000000000000000081
100000000000000000079
100000000000000000077
100000000000000000075
100000000000000000073
100000000000000000071
100000000000000000069
100000000000000000067
100000000000000000065
100000000000000000063
100000000000000000001
100000000000000000059
100000000000000000857
100000000000000000055
100000000000000000053
100000000000000000051
160000000000000000049
100000000000000000047
100000000000000000045
100000000000000000043
1660000000000000000041
100000000000000000039
1060000000000000000037
100000000000000000035
160000000000000000033
100000000000000000031

99999999999999998059
99599959999999958065
99999999999999958079
99999999999999998101
99999959999999998131
99599959999999958169
99999959999999958215
99999999999999998269
99599959999999958331
99999999999999998401
99999959999599998479
99999999999999998565
99599959999999998659
99999999999999998761
99999999999999998871
99999999999999998589
99999959999999959115
99999999999999999249
999959999995999999391
9999599999995999999541
99999999999999999699
99999999999999999865
i]

184

376

576

784

Of course, we can jump back by twos because even numbers are certainly
not prime, so we don't need to test the even numbers.

And, as we can see, now we've found a number where the modulus of n
modulus the number is zero, so this is a prime factor.

We can get the other prime factor by just dividing n by the first one:

180000000000000000168000000000000000005031
106000000000000060039

= n/p

e
e
e
E |

1000000000000000001289L

b

-2 p*q
10680000000000000001679000000000000000502T1L

So, here's the original number, n, which is the product of two primes, and we
have one of the primes; q is n over p which you can see. To test it, if we
calculate p*q, we get the original number again. So, we have factored a large
number into p and q, and that is enough information to crack RSA.

So, let's try that in Python. Go to the Terminal and run python:

n = 10000000000000000016800000000000000005031
from decimal import *

getcontext().prec = 50
Decimal(n).sqrt()

So, we have n equal to the large number shown. We import this number to
the decimat library and set the position to se places. Now, if we take the square
root, we get 1 followed by many zeros, and then ss, and then a fraction.
Then, we copy the integer part of the square root:

Decimal('100000000000000000083.99995959559999958987500000000")

Now we set p in range of that number followed by the number, as shown
here:

|>>> for p in range(100000000000000000083, 100000000000000000030, -2):

This begins a loop, and all we have to do is print:

print p, n%p

It will calculate n modulus p, which will be zero. If that's an integral multiple,
pressing Enter twice runs the loop:

100000000000000000083
1060000000000600000081
100000000000000000072
1000000000000000000T77
100000000000000000075
100000600000000000007 3
100000000000000000071
100000000000000860069
100000000000000060067
100000000000000000065
108000000000000000063
100000000000000000061
100000000000000000059
100000000000000000057
100000000000000000055
100000000000000000053
100000000000000000051
l0e000000000000000049
100080000000000000047
100000000000000000045
100000000000000000043
100000000000000000041
l1de000000000000000039
100000800000000000037
100000000000000000035
100000000000000000033
100000800000000000031

So, we can see this number is p:

| 100000000000000000039 0

If we copy that number, we can set p equal to that and can set q equal to n

over p:
>>> p = 100000000000000000039
>>> q = n/p

If we print, we will get the following:

P

993999999999999998059
999999999999999980665
99999959999999958079
99999999999999998101
99999999999999998131
99999999999999998169
99999999999999998215
99999999999999958269
99999999999999958331
99999999999999998401
99999999999999998479
99999999999999998565
99999999999999998659
99999999999999998761
99999999999999998871
99999999999999998989
99999999999999999115
99999999999999999245
99999999999999999391
99999959999999999541
999995999599999999695
99999999999999999865
0]

184

376

376

784

l00000000000000000039L

1000000000000000001680000000000000R005031L

You can see n matches with p+q. So, we've now factored that long number
into its complement primes.

Here's the first challenge:

First challenge: Factor this number

o 1234592592962967901296297037045679111112222209893296463705376
55992609296463211544461111289984805767

Here's the second challenge:

Second challenge: Factor this number

o 2457319490775870034107936327697724401721210936487723795115696
6106530822283459784527248790924194626028012879210344125924518
2932059730438317062685471060402660920755731093250407425954390
9051122202199219

In both cases, you will be able to factor them.

What's next?

Internet of Things (Io0T) has a promising future and will soon connect
billions of devices. For IoT, security has always been a major concern. But
the good news is that cryptography offers various options to secure IOT
from hackers; hence, it is a key to the coming era of IoT.

Cryptography within IoT

When we talk about using cryptography within IoT, we are talking about
using cryptography across many layers of the communication stack. If we
look at the OSI model, we can see that crypto is used at Layer 2 and up with
linking operating at level 2, networking operating at layer 3, and
transporting operating at layer 4:

Cryptographic Controls in loT Protocols

Application

Session

Transport

Logical Link Control

Data Link Layer

B802.11-
1997

B02.11a 802.11b 802.11g Draft 802.11n Physical Layer

At the Application Layer, Cryptography is also used to protect
communication through both authentication and encryption. Before we
begin our description about specific cryptographic approaches for IOT
protocols, let’s first talk about the ready availability of exploitation tools for
existing wireless protocols. As IOT matures, keep in mind that there are
many tools available to exploit IOT wireless communication protocols and
these tools will continue to rapidly keep up with new technologies
introduced to support the IOT.

For example, looking at Wi-Fi 802.11, which was introduced in 1989, the
AirCrack tool was introduced in 2004 and to this day is still a popular and

well-supported tool. There are also many tools available to exploit
Bluetooth communication and cellular communication.

Besides this, keys that drive crypto must be securely managed both at the
device (module) level as well as throughout an enterprise. Let’s explore
some of them.

ZigBee cryptographic keys

ZigBee uses many keys for cryptographic operations:

e Link key: This is established based on the use of pre-provisioned
master key from the manufacturer. The link key provides point-to-
point secure connection between two ZigBee nodes. The link key is
also used to establish derived keys, including data keys, key-transport
keys, and Key-load keys

o Key-transport keys: This key is the outcome of executing the
specialized keyed hash function under the link key with the 1-octet
string 0x00 as the input string

Complexity of ZigBee key
management

As mentioned earlier, key management is challenging. Let’s take a look at
how challenging key management can be. Take, for example, the ZigBee
protocol. There are three primary types of keys that can be employed within
the ZigBee network. Master keys are often preinstalled by the vendor and
protect the exchange between two ZigBee nodes as they generate link keys.
Link keys support node-to-node communication and network keys support
broadcast communication.

Key management functions might be built into the media management
software of utility, for example, and it might be provided as standalone
software. However, all of these keys need to be sufficiently secured across
their entire lifecycle.

Bluetooth — LE

The Bluetooth low energy protocol employs cryptography for pairing
devices for future relationships. Bluetooth—LE uses various keys within
these cryptographic processes, including a long-term key (LTK), which is
used to generate a 128-bit key for the link layer encryption and a
connection signature resolving key (CSRK), which is used for digitally
signing data at the ATT layer.

With this, we come to the end of this book. Cryptography applications
should be tailored specifically for the threat environments. Cryptography is
based on strong, well- designed algorithms and associated with all layers of
the communication stack. It is everywhere and fundamental to the security
of IOT systems.

Summary

In this chapter, we covered AES, the strongest private key system in
common use today, and its two modes, ECB and CBC. We covered the
padding oracle attack against CBC, which is made possible when an error
message gives the attacker more information than they should have about
the encryption process.

Finally, we covered RSA, the primary public key algorithm in use today to
send secrets over the internet, and we also looked at the challenge where we
cracked RSA in the case where the two prime numbers are similar instead
of being independent and randomly chosen. We also looked at the future of
cryptography and how it will help secure IOT devices.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by
Packt:

Rejah Rehim

Python Penetration
Testing

Cookbook

Python Penetration Testing Cookbook
Rejah Rehim
ISBN: 978-1-78439-977-1

e Learn to configure Python in different environment setups

e Find an IP address from a web page using BeautifulSoup and Scrapy

e Discover different types of packet sniffing script to sniff network
packets

e Master layer-2 and TCP/ IP attacks

e Master techniques for exploit development for Windows and Linux

e Incorporate various network- and packet-sniffing techniques using
Raw sockets and Scrapy

Python for
Offensive

PenTest

https://www.packtpub.com/networking-and-servers/python-penetration-testing-cookbook
https://www.packtpub.com/networking-and-servers/python-offensive-pentest

Python for Offensive PenTest
Hussam Khrais
ISBN: 978-1-78883-897-9

e Code your own reverse shell (TCP and HTTP)

e Create your own anonymous shell by interacting with Twitter, Google
Forms, and SourceForge

» Replicate Metasploit features and build an advanced shell

e Hack passwords using multiple techniques (API hooking, keyloggers,
and clipboard hijacking)

e Exfiltrate data from your target

e Add encryption (AES, RSA, and XOR) to your shell to learn how
cryptography is being abused by malware

e Discover privilege escalation on Windows with practical examples

e Countermeasures against most attacksld your own Windows IoT Face
Recognition door locking system

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

	Title Page
	Copyright and Credits
	Hands-On Cryptography with Python

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributor
	About the author
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Obfuscation
	About cryptography
	Installing and setting up Python
	Using Python on Mac or Linux
	Installing Python on Windows

	Caesar cipher and ROT13
	Implementing the Caesar cipher in Python
	ROT13

	base64 encoding
	ASCII data
	Binary data

	XOR
	Challenge 1 – the Caesar cipher
	Challenge 2 – base64
	Challenge 3 – XOR
	Summary

	Hashing
	MD5 and SHA hashes
	What are hashes?

	Windows password hashes
	Getting hashes with Cain
	MD4 and Unicode
	Cracking hashes with Google
	Cracking hashes with wordlists

	Linux password hashes
	Challenge 1 – cracking Windows hashes
	Challenge 2 – cracking many-round hashes
	Challenge 3 – cracking Linux hashes
	Summary

	Strong Encryption
	Strong encryption with AES
	ECB and CBC modes
	ECB
	CBC

	Padding oracle attack
	Strong encryption with RSA
	Public key encryption
	RSA algorithm
	Implementation in Python

	Challenge – cracking RSA with similar factors
	Large integers in Python

	What's next?
	Cryptography within IoT
	ZigBee cryptographic keys
	Complexity of ZigBee key management
	Bluetooth – LE

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

